CHIRAL EFT FOR DARK MATTER DIRECT DETECTION

> JURE ZUPAN U. OF CINCINNATI & CERN

> > based on work with F. Bishara, J. Brod, B. Grinstein, JZ, 1610.nnnnn

Belica, Oct 20 2016

THE AIM/MOTIVATION

X

- several probes of DM
 - direct detection
 - indirect detection
 - production at colliders
- can one relate

 experimental results
 "model
 independently"?

X

- at first the problem seems simple
 - "just invert the diagram"
- but many subtleties
- most importantly: physics governed by different energy scales
 - direct detection: ~200 MeV
 - indirect detection: DM mass (~ 100 GeV ?)
 - LHC production: DM mass + LHC kinematics

- at first the problem seems simple
 - "just invert the diagram"
- but many subtleties
- most importantly: physics governed by different energy scales
 - direct detection: ~200 MeV
 - indirect detection: DM mass (~ 100 GeV ?)
 - LHC production: DM mass + LHC kinematics

- in fact two problems
 - comparing different DM direct detection experiments
 - comparing direct detection with LHC and indirect detection

in fact two problems

HIERARCHY OF SCALES

- direct DM detection
 - energy deposited in keV range
 - for cold DM, v~10⁻³,
 typical momentum exchange

 $q_{\rm max} \sim 200$ MeV.

• a series of well separated scales

$$\Lambda \gg m_{\chi} \sim v_{\rm EW} \gg \Lambda_{\rm QCD} \gg q$$

- need to relate operators at Λ to operators at scales ~few x Λ_{QCD}
- need to treat the confinement, nuclear physics

TOWER OF EFTS

ABOVE EW SCALE

- for now limit the discussion to
 - dim-5 and dim-6 operators above EW scale
 - here only fermionic DM
- e.g., dim-5 operators:

CP even

$$Q_{1}^{(5)} = \frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi) B_{\mu\nu}, Q_{2}^{(5)} = \frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\chi) W_{\mu\nu}^{a},$$

$$Q_{3}^{(5)} = (\bar{\chi}\chi) (H^{\dagger}H), \qquad Q_{4}^{(5)} = (\bar{\chi}\tilde{\tau}^{a}\chi) (H^{\dagger}\tau^{a}H),$$

$$Q_{5}^{(5)} = i\frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\gamma_{5}\chi) B_{\mu\nu}, Q_{6}^{(5)} = i\frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\gamma_{5}\chi) W_{\mu\nu}^{a},$$
(5)

$$Q_7^{(5)} = i(\bar{\chi}\gamma_5\chi)(H^{\dagger}H), \qquad Q_8^{(5)} = i(\bar{\chi}\tilde{\tau}^a\gamma_5\chi)(H^{\dagger}\tau^aH).$$

7

J. Zupan Chiral EFT for DM direct detection

RENORMALIZATION GROUP EFFECTS

mixing of operators through RGE (Renormalization Group Equations):

$$\frac{d}{d\log\mu}\mathcal{C}(\mu) = \gamma^T \mathcal{C}(\mu)$$

- Do we need to re-sum the logs?
 - $\alpha_1(\mu_{EW}) \approx 0.01, \, \alpha_2(\mu_{EW}) \approx 0.03, \, \alpha_\lambda(\mu_{EW}) \approx 0.04, \, \alpha_t(\mu_{EW}) \approx 0.08$
 - No would need $\Lambda \sim 10^4$ TeV
- importance of RGE:
 - mixing of suppressed and unsuppressed operators
 - penguin insertions mix lepton and quark operators

8

MATCHING AT EW SCALE

- at EW scale integrate out W, Z, h, t
 - $m_{\chi} \sim v_{EW}$: DM is "HQET" field in EFT
- example: Z exchange contribution
 - can come from either dim-6 ops or from dim-4 interaction

RUNNING AND MATCHING AT FLAVOR THRESHOLDS

- QCD / QED running is well-known
- Penguin insertions will mix lepton and quark operators
- Matching at flavor thresholds

NUCLEAR RESPONSE

NUCLEAR RESPONSE

12

- for nuclear response we use the formalism of Anand Fitzpatrick, Haxtor
- match onto ops. with NR nucleons
- only this subset of NR operators is generated

 $ec{v}_T^\perp = ec{v} - ec{q}/(2\mu_{\chi A}),$

• xsec prop. to

Fitzpatrick, Haxton
is match onto ops.
with NR nucleons
only this subset of
NR operators is
generated

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} \left[c_{\text{KR},1}^{\tau}c_{\text{KR},1}^{\tau} + \frac{1}{4} \left(\frac{\vec{q}^{2}}{m_{\chi}^{2}}\vec{v}_{\text{T}}^{\perp2}c_{\text{KR},5}^{\tau}c_{\text{KR},5}\right),$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} \left[c_{\text{KR},1}^{\tau}c_{\text{KR},1} + \frac{1}{4} \left(\frac{\vec{q}^{2}}{m_{\chi}^{2}}\vec{v}_{\text{T}}^{\perp2}c_{\text{KR},5}^{\tau}c_{\text{KR},5}\right),$$

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} \left[c_{\text{KR},1}^{\tau}c_{\text{KR},1} + \frac{1}{4} \left(\frac{\vec{q}^{2}}{m_{\chi}^{2}}\vec{v}_{\text{T}}^{\perp2}c_{\text{KR},5}^{\tau}c_{\text{KR},1}\right)\right],$$

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} \left[c_{\text{KR},1}^{\tau}c_{\text{KR},1} + \frac{1}{4} \left(\frac{\vec{q}^{2}}{m_{\chi}^{2}}\vec{v}_{\text{T}}^{\perp2}c_{\text{KR},5}^{\tau}c_{\text{KR},1}\right)\right],$$

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{v} - \vec{v} + \vec{v} +$$

Belica, Oct 20 2016

NUCLEAR RESPONSE FUNCTIONS

- $W_M(q)$: from vector operator
 - in $q \rightarrow 0$ limit counts nucleons \Rightarrow spin-indep. (coherent) scattering
- $W_{\Sigma''}$ and $W_{\Sigma'}$: longit. and transverse axial ops.
 - related to conventional spin form factors

$$S_{00,11} = \frac{1}{4\pi} \sum_{\text{spins}} |\langle \vec{S}_p \pm \vec{S}_n \rangle|^2,$$
$$S_{01} = \frac{1}{2\pi} \sum_{\text{spins}} |\langle \vec{S}_p \rangle|^2 - |\langle \vec{S}_n \rangle|^2,$$

1

• measure the nucleon spin content of the nucleus

 $W_{\Sigma'}^{\tau\tau'} + W_{\Sigma''}^{\tau\tau'} = S_{\tau\tau'}, \quad \tau, \tau' = 0, 1.$

- W_{Δ} : vector transverse magnetic operators
 - nucleon angular momentum content of the nucleus

13

• (very) rough scaling:

$$W_M \sim \mathcal{O}(A^2), \qquad W_{\Sigma'}, W_{\Sigma''}, W_{\Delta}, W_{\Delta\Sigma'} \sim \mathcal{O}(1)$$

- in general three more response functions
 - these not generated to the order we work

J. Zupan Chiral EFT for DM direct detection

Belica, Oct 20 2016

ALL OPERATORS?

- do we need all the operators?
 - general dim 5 and 6 EFT only require for LO description:

14

- using the rough scalings $A \sim 100$, $q/m_N \sim 0.1$, $v_T \sim 10$
- allow for fine-tuning to get VxA, AxV structures
 - then 2 derivative ops. can be LO
- due to pion poles 2 derivative ops. can be of LO size

J. Zupan Chiral EFT for DM direct detection

Heavy Baryon ChPT

- assumption in the formalism for nuclear response functions
 - DM scatters on single nucleon
- how justified is this assumption?
 - how large are contributions from DM coupling to four-nucleon operators
- can be addressed using
 - Heavy Baryon Chiral Perturbation Theory (HBChPT)
 - ChEFT of nuclear forces
 - proton and neutron treated as heavy, $m_{p,n} \gg q \sim 200 \text{MeV}$

HBChPT counting

Weinberg, NPB363, 3 (1991); Kaplan, Savage, Wise, nucl-th/9605002; Cirigliano, Graesser, Ovanesyan, 1205.2695

- HBChPT allows for consistent counting of "A-nucleon potentials"
 - expansion in $q/\Lambda_{\text{ChEFT}} \sim q/m_{p,n} \sim 0.3$
- A-nucleon irreducible amplitudes scale as $\sim q^{\prime}$

$$\nu = 4 - A - 2C + 2L + \sum_{i} V_i \epsilon_i + \epsilon_{\chi},$$
 effective chiral dimensions
of connected diagrams # of loops # of vertices of type i $\epsilon_i = d_i + n_i/2 - 2,$
• more nucleon legs in a vertex chiral dimension ~ # of nucleon

- more nucleon legs in a vertex more suppressed
- gives scaling for LO and NLO potentials

legs

of derivatives

• gives scaling for LO and NLO potentials

LO DIAGRAMS

quark and gluon currents hadronize as

- SD always scales as $\sim q^{\nu_{\rm LO}+3}$
- only for $J_{\chi}^{A} \cdot \tilde{J}_{q}^{V}, J_{\chi}^{S} \tilde{J}_{q}^{S}, J_{\chi}^{P} \tilde{J}_{q}^{S}$ and $J_{\chi}^{V} \cdot \tilde{J}_{q}^{A}$ LD parametrically larger, $\sim q^{\nu_{\text{LO}}+1} \sim q^{\nu_{\text{LO}}+2}$
- we work to LO, results have relative $O(q/\Lambda_{ChEFT}) \sim 30\%$ accuracy
 - at this order: DM couples only to single nucleon currents
- at NLO, e.g., $\bar{q}q$ has LD DM interaction with two nucleons
 - calculable using HBChPT, error $\sim (q/\Lambda_{ChEFT})^2 \sim 10\%$
- genuine SD DM-2nucleon interaction at NNNLO (error~1%)

18

• will require lattice QCD J. Zupan Chiral EFT for DM direct detection

Belica, Oct 20 2016

CONCLUSIONS

- presented work on general DM-EFT
- counting result for nuclear response and leading order coefficients
- renormalization group running important for suppressed operators

BACKUP SLIDES

OUR FRAMEWORK

- our working assumptions
 - field content is DM + SM particles
 - additional mediators (if any) to the dark sector are heavy
- ⇒ DM interactions with SM described by Effective Field Theory
- allow for DM to
 - have EWK quantum numbers
 - be admixture of several multiplets
 - e.g., in MSSM: bino, wino, higgsino
 - Minimal Dark Matter Cirelli et al. hep-ph/0512090,...
 - "Technibaryons"

sino

see also D'Eramo, Procura, 1411.3342;

Crivellin, Haisch, 1408.5046;

Berlin, Robertson, Solon, Zurek, 1511.05964;

Hill, Solon, 1401.3339, 1309.4092, 1409.8290;

- Nussinov, Phys.Lett. B165 (1985) 55,...

21

DIM-5 OPERATORS

- for now limit the discussion to
 - dim-5 and dim-6 operators above EW scale
 - only fermionic DM
- dim-5 operators:

CP even

$$Q_{1}^{(5)} = \frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi) B_{\mu\nu}, Q_{2}^{(5)} = \frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\chi) W_{\mu\nu}^{a},$$

$$Q_{3}^{(5)} = (\bar{\chi}\chi) (H^{\dagger}H), \qquad Q_{4}^{(5)} = (\bar{\chi}\tilde{\tau}^{a}\chi) (H^{\dagger}\tau^{a}H),$$

$$Q_{5}^{(5)} = i \frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\gamma_{5}\chi) B_{\mu\nu}, Q_{6}^{(5)} = i \frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\gamma_{5}\chi) W_{\mu\nu}^{a},$$

$$Q_{7}^{(5)} = i (\bar{\chi}\gamma_{5}\chi) (H^{\dagger}H), \qquad Q_{8}^{(5)} = i (\bar{\chi}\tilde{\tau}^{a}\gamma_{5}\chi) (H^{\dagger}\tau^{a}H).$$

J. Zupan Chiral EFT for DM direct detection

DIM-6 OPERATORS

• DM coupling to quark currents

 $\begin{aligned} Q_{1,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{a}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{a}Q_{L}^{i}), \ Q_{5,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{a}Q_{L}^{i}). \\ Q_{2,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i}), \qquad Q_{6,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i}), \\ Q_{3,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{i}), \qquad Q_{7,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{i}), \\ Q_{4,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{i}), \qquad Q_{8,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{i}). \end{aligned}$

• DM coupling to lepton currents

 $\begin{aligned} Q_{9,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{a}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}\tau^{a}L_{L}^{i}), \quad Q_{12,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}\tau^{a}L_{L}^{i}), \\ Q_{10,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}L_{L}^{i}), \qquad Q_{13,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}L_{L}^{i}), \\ Q_{11,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}_{R}^{i}\gamma^{\mu}\ell_{R}^{i}), \qquad Q_{14,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}_{R}^{i}\gamma^{\mu}\ell_{R}^{i}). \end{aligned}$

• DM coupling to Higgs currents $Q_{15}^{(6)} = (\bar{\chi}\gamma^{\mu}\tilde{\tau}^{a}\chi)(H^{\dagger}i\overset{\leftrightarrow}{D^{a}}_{\mu}H), Q_{17}^{(6)} = (\bar{\chi}\gamma^{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(H^{\dagger}i\overset{\leftrightarrow}{D^{a}}_{\mu}H),$ $Q_{16}^{(6)} = (\bar{\chi}\gamma^{\mu}\chi)(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H), \qquad Q_{18}^{(6)} = (\bar{\chi}\gamma^{\mu}\gamma_{5}\chi)(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H).$ Belica, Oct 20 2016

DIFFERENT APPROACHES

Bouvier et al 1603.04156; Abdallah et al., 1506.03116; 1409.2893; Haisch, Kahlhoefer, Tait, 1603.01267; Papucci, Vichi, Zurek,1402.2285; DiFranzo, Nagao, Rajaraman, Tait,1308.2679; An, Ji, Wang, 1202.2894; +more

- simplified models
 - introduce *t* or *s*channel mediators
- we limit ourselves to EFT region of parameter space

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783; Bai, Fox, Harnik, 1005.3797; + many refs.

- get "universal" behavior from RG
- anomalous dimension due to exchanges of the SM particles

24

J. Zupan Chiral EFT for DM direct detection

Belica, Oct 20 2016

GENERAL EFT LAGRANGIAN

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783; Bai, Fox, Harnik, 1005.3797; + many refs.

the general EFT DM interaction Lagrangian thus

$$\mathcal{L}_{\chi} = \mathcal{L}_{\chi}^{(4)} + \mathcal{L}_{\chi}^{(5)} + \mathcal{L}_{\chi}^{(6)} + \cdots,$$

we allow DM to have EWK charges

$$\mathcal{L}_{\chi}^{(4)} = \overline{\chi} i \gamma^{\mu} D_{\mu} \chi - m_{\chi} \overline{\chi} \chi$$

- also allow for many DM multiplets
- for now take DM to be a fermion (scalar, vector future)
- non-renormalizable interactions (mass of mediators $\sim \Lambda$)

$$\mathcal{L}_{\chi}^{(5)} = \sum_{a} \frac{\mathcal{C}_{a}^{(5)}}{\Lambda} Q_{a}^{(5)}, \qquad \mathcal{L}_{\chi}^{(6)} = \sum_{a} \frac{\mathcal{C}_{a}^{(6)}}{\Lambda^{2}} Q_{a}^{(6)}, \quad \dots$$

CROSS SECTIONS

- DM is non-relativistic in the lab frame $v \sim 10^{-3}$
- nucleons non-relativistic inside the nucleus, $v_N \sim \Lambda_{QCD}/m_N \sim 0.1$
- DM-nucleon scattering non-relativistic
 - DM can only couple to nuclear mass or spin
 - spin dependent (SD) or spin indep. (SI) scattering
 - depending on details of interactions either can be velocity suppressed by v or v_N

RATE

- differential counting rate $\frac{dR}{dE_d} = \frac{\rho_0}{m_{\chi}} \frac{\eta}{\rho_{\text{det}}} \int_{v > v_{\text{min}}} d^3 v \frac{d\sigma}{dE_d} v f_{\odot}(\vec{v})$ $\rho_0 = 0.3 \text{ GeV/cm}^3$
- minimal velocity $\chi N \to \chi' N$ $v_{\min} = \frac{1}{\sqrt{2m_N E_d}} \left(\frac{m_N E_d}{\mu_{\chi N}} + \delta \right) \quad v_{\min} > v_{esc}$
- for mass splitting large enough

J. Zupan Chiral EFT for DM direct detection

27

for mass splitting large enough

RATE

- differential counting rate $\frac{dR}{dE_d} = \frac{\rho_0}{m_{\chi}} \frac{\eta}{\rho_{\text{det}}} \int_{v > v_{\text{min}}} d^3 v \frac{d\sigma}{dE_d} v f_{\odot}(\vec{v})$ $\rho_0 = 0.3 \text{ GeV/cm}^3$
- minimal velocity $\chi N \to \chi' N$ $v_{\min} = \frac{1}{\sqrt{2m_N E_d}} \left(\frac{m_N E_d}{\mu_{\chi N}} + \delta \right) \quad v_{\min} > v_{esc}$
- for mass splitting large enough

J. Zupan Chiral EFT for DM direct detection

27

ELASTIC SCATTERING

- elastic scattering: featureless spectrum
- lower DM mass \Rightarrow smaller E_{nr}
- for low mass DM crucial low thresholds

J. Zupan Chiral EFT for DM direct detection

28

INELASTIC SCATTERING

- for δ large enough only tails of v distr. contribute
- suppression of events at low E_{nr}

TOY EXAMPLE

- an example: scalar mediator ϕ , fermionic DM χ
- interacts with both the Higgs and DM

$$\mathcal{L}_{\phi} \supset \lambda_{\chi} \phi \bar{\chi} \chi + \mu_{H\phi} \phi H^{\dagger} H$$

• integrating out ϕ gives dim5 operator

$$Q_3^{(5)} = (\bar{\chi}\chi)(H^{\dagger}H),$$

TOY EXAMPLE: LOOP ONLY

- mediators:
 - Z_2 -odd electroweak singlet scalar ϕ
 - Z_2 -even fermion ψ (the same EWK quantum numbers as DM)
- DM interacts with the SM only through loops

RUNNING ABOVE EW SCALE

• running above EW scale can mix velocity suppressed and unsuppressed ops.

RUNNING ABOVE EW SCALE

- for dimension 6 operators
 - mixing that is present only for DM with EW charges

• mixing that is there even for EWK neutral DM

WHY MIXING EFFECTS?

- momentum / velocity suppressed interact.s can be leading in UV models
- electroweak loops can mix suppressed and unsuppressed ops.

Freytsis, Ligeti, 1012.5317; Haisch et al. 1302.4454; Crivellin et al. 1402.1173, 1408.5046; D'Eramo et al. 1409.2893

- we calculate all relevant radiative corrections
- the aim is to build a complete EFT connecting UV scale to atomic scales
 - right now: partial results shown