Angular Observables for Spin Discrimination in Boosted Diboson Final States based on JHEP 1609 (2016) 036 (arXiv:1604.06096) MB and Felix Yu

Malte Buschmann

University of Mainz

Brda 2016, 20/10/2016

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter

Malte Buschmann (University of Mainz)

Diboson Spin Discrimination

Brda 2016, 20/10/2016 1 / 12

How to determine the spin of a resonance is well studied, see Higgs:

S.Choi et.al. (2002), see also: J.Dell'Aquilla,

C.Nelson (1986), A.Djouadi et.al. (1994)

Angular distributions are know analytically

see e.g.: Gao et.al. (2010), Bolognesi et.al. (2012)

How to determine the spin of a resonance is well studied, see Higgs:

S.Choi et.al. (2002), see also: J.Dell'Aquilla,

C.Nelson (1986), A.Djouadi et.al. (1994)

Angular distributions are know analytically

see e.g.: Gao et.al. (2010), Bolognesi et.al. (2012)

So what is different?

Resonance masses are heavier (O(TeV)), thus

- Very different background rates
 - ightarrow other V decay channels may be sensitive
- Objects are more boosted
 - \rightarrow jet substructure techniques necessary for hadronic channels

So what is different?

Resonance masses are heavier (O(TeV)), thus

- Very different background rates
 - ightarrow other V decay channels may be sensitive
- Objects are more boosted
 - ightarrow jet substructure techniques necessary for hadronic channels

- 2 TeV excess taught us:
 - From spin-0 to spin-2 everything seems viable
 - Signal can very well show up in the hadronic channels first (higher rate than (semi-)leptonic channels)

We have to study the hadronic channel, but reconstruction difficult:

Spin discrimination still possible?

How do jet substructure techniques affect angular observables?

Can you optimize searches?

ATLAS @ 8 TeV: Mass-drop filter

ATLAS @ 13 TeV: Trimming + Energy correlation functions CMS @ 8+13 TeV: Pruning + N-subjettiness Idea of jet substrucure (simplified):

- Start with fat jet (R=0.8-1.2)
- Remove contamination from soft radiation
- Identify subjets
- To distinguish between QCD jets (1-prong) and V jets (2-prong) for example require subjets to be balanced $(y = p_{T,j2}/p_{T,j1} > y_{min})$. y_{min} typically 0.1-0.2

Diboson Spin Discrimination

Strong correlation between ΔR separation (between subjets) and $\Delta \eta$ + jets with small ΔR are hard to tag

Malte Buschmann (University of Mainz)

Diboson Spin Discrimination

$$|\cos heta_{q}| pprox rac{1-y}{1+y} \leq rac{1-y_{\min}}{1+y_{\min}}$$

Diboson Spin Discrimination

Ultimately: Test

Model A+Background

against

Model B+Background

Null hvp.	Test hvp.	Discrimin	ator C.L	
- 71-	· · · · · ·	0.	001 0.01	0.1 1
spin-0⁺	spin-1 Z'	lcos(θ*)l		lu <mark>n 5 duu</mark> n
		lcos(θ _q)l IΨl		
		combined		
	spin-1 W'	lcos(0*)l		
	·	$lcos(\theta_q)l$		
		IΨI	_	
		combined		
	spin-1 W	lcos(0*)l		
	n	lcos(θ _q)l		i 📕
		IΨI		
		combined		
	spin-2 y	lcos(0*)l		
		lcos(θ _q)l		
		IΨI		
		combined		
spin-1 Z'	spin-0 ⁺	lcos(0*)l		· ·
		lcos(θ _q)l		: 📕
		IΨI		1
		combined		
	spin-1 W'	lcos(0*)l		
		lcos(θ _q)l IΨl		
		combined		· 1
	spin-1 W_	lcos(0*)l		
niversity of M	ainz)	Diboson Spin	Discrimination	Brda 2016

Malte Buschmann

P

/2016 12 / 12