Light window for right-handed neutrinos in the Left-Right model

Goran Popara (with F. Nesti and M. Nemevšek)

Ruđer Bošković Institute

October 21, 2016

うして ふゆう ふほう ふほう ふしつ

Existence of neutrino masses implied by the discovery of neutrino oscillations (Super-Kamiokande & SNO).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

Important questions:

- ▶ Dirac/Majorana nature of neutrinos,
- ▶ neutrino mass generation mechanism.

Attractive explanation of neutrino masses (and their smallness) is the *seesaw mechanism*, where neutrinos are Majorana fermions.

Possible extension of SM is the *Left-Right symmetric model* (LRSM):

- ▶ restores parity,
- ▶ naturally embeds the seesaw mechanism.

Important consequence of Majorana neutrinos is lepton number violation (LNV), $\Delta L = 2$.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Left-right symmetric model

J. C. Pati, A. Salam, PRD 10 (1974); 11 (1975); R. N. Mohapatra, PRD 11 (1975)
G. Senjanović, R. N. Mohapatra, PRD 12 (1975); G. Senjanović, PRL 44 (1980) ...

Gauge group:

$$\mathcal{G}_{LR} = SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$
$$\Rightarrow \quad W_{L,R} \quad Z_{L,R} \quad \gamma$$

Matter fields:

$$Q_{L,i} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}_i \sim \left(\mathbf{2}, \mathbf{1}, \frac{1}{3}\right) \quad Q_{R,i} = \begin{pmatrix} u_R \\ d_R \end{pmatrix}_i \sim \left(\mathbf{1}, \mathbf{2}, \frac{1}{3}\right)$$
$$\psi_{L,i} = \begin{pmatrix} \nu_L \\ l_L \end{pmatrix}_i \sim \left(\mathbf{2}, \mathbf{1}, -1\right) \quad \psi_{R,i} = \begin{pmatrix} N_R \\ l_R \end{pmatrix}_i \sim \left(\mathbf{1}, \mathbf{2}, -1\right)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 _ のへで

Left-right symmetric model

Scalar sector:

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (\mathbf{2}, \mathbf{2}, 0)$$

$$\Delta_{L,R} = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}_{L,R} \sim (\mathbf{3}, \mathbf{1}, 2), (\mathbf{1}, \mathbf{3}, 2)$$

Symmetry breaking pattern:

$$\mathcal{G}_{LR} \xrightarrow{\langle \Delta_R \rangle \neq 0} SU(2)_L \times U(1) \xrightarrow{\langle \Phi \rangle \neq 0} U(1)_{\text{em}}$$
$$Q_{\text{em}} = I_{3L} + I_{3R} + \frac{B - L}{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Crucial ingredient — Majorana nature of neutrinos.

Smallness of neutrino mass is connected to the scale of new physics (M_{W_R}) :

$$m_{\nu_l} \sim \frac{m_l^2}{M_{W_R}}.$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

Constraints

Constraints from low-energy experiments:

A. Maiezza, M. Nemevšek, Phys. Rev. D 90 (2014)

$$\Rightarrow M_{W_R} \gtrsim 3 \text{ TeV}$$

Neutrino nautre is observable at LHC!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Constraints: Light window

M. Nemevšek, F. Nesti, G. Senjanović, Y. Zhang, Phys. Rev. D 83 (2011)

4 TeV $\lesssim M_{W_R} \lesssim 7$ TeV and 10 GeV $\lesssim m_N \lesssim 400$ GeV

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Keung-Senjanović process

W.-Y. Keung, G. Senjanović, Phys. Rev. Lett. 50 (1983)

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Important features of Keung-Senjanović (KS) process:

- ▶ lepton number violation (not present in SM),
- displaced vertices (long-lived N) helpful in eliminating the background,
- ▶ high-energy analogue to $0\nu 2\beta$.

Although clean in principle, presents some real-world challenges:

- ▶ background
- \blacktriangleright detector effects (e. g. highly boosted products of N decay become collimated).

Simulation of signal and background involves several steps:

- 1. model definition (FeynRules),
- 2. event generation (MadGraph),
- 3. hadronization (Pythia),
- 4. detector simulation (Delphes),
- 5. analysis, cuts (MadAnalysis).

Narrow ${\cal N}$ resonance causes numerical instabilities in the event generation step!

うして ふゆう ふほう ふほう ふしつ

Monte Carlo simulation: Narrow width problem

Simple test with scalars: $\Phi \to \phi N, N \to \phi \varphi$.

ション ふゆ マ キャット マックシン

Solution – custom event generator (KSEG):

- recursive phase space decomposition (integration over resonances),
- importance sampling from Breit-Wigner distribution to eliminate narrow N peak,

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

▶ unweighted events output to LHE file (for further processing).

Cross-check using narrow width approximation:

Cross-check using narrow width approximation:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

Transverse momentum and energy distributions (KSEG & MG5) of the prompt muon for $m_N = 80$ GeV and $M_R = 4$ TeV (upper panel) and $M_R = 6$ TeV (lower panel):

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへの

Invariant mass of the muons and jets for $m_N = 80$ GeV and $M_R = 4$ TeV (left) and $M_R = 6$ TeV (right):

 ΔR of various pairs for $m_N=80$ GeV and $M_R=4$ TeV (upper panel) and $M_R=6$ TeV (lower panel):

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

MadGraph instability problem in Keung-Senjanović process is solved (for the relevant portion of parameter space).

Hadronization and detector simulation ongoing.

Things to be done:

- 1. consider background,
- 2. place/optimize cuts (displaced vertices interesting here),

うして ふゆう ふほう ふほう ふしつ

- 3. sensitivity assessment, limits on the model,
- 4. prospects for future colliders.

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two kinds of LR symmetries, imposing restrictions on Yukawa matrices:

$$\mathcal{P}: \left\{ \begin{array}{c} Q_L \leftrightarrow Q_R \\ \Phi \to \Phi^{\dagger} \end{array} \Rightarrow Y = Y^{\dagger}, \quad \mathcal{C}: \left\{ \begin{array}{c} Q_L \leftrightarrow (Q_R)^c \\ \Phi \to \Phi^T \end{array} \Rightarrow Y = Y^T \end{array} \right.$$

 \mathcal{C} has an advantage — it can be gauged (involves spinors with same final chirality).

うして ふゆう ふほう ふほう ふしつ

A. Maiezza, M. Nemevšek, F. Nesti, G. Senjanović, Phys. Rev. D 82 (2010)