Supercool Dark Matter

Joachim Kopp

(University of Mainz / PRISMA Cluster of Excellence)

Brda 2016 Workshop, Medana, Slovenia

Based on work done in collaboration with Michael J. Baker arXiv:1608.07578

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Dark Matter with an Afterburner

Joachim Kopp

(University of Mainz / PRISMA Cluster of Excellence)

Brda 2016 Workshop, Medana, Slovenia

Based on work done in collaboration with Michael J. Baker arXiv:1608.07578

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Dark Matter Decay between Weak Scale Phase Transitions

Joachim Kopp

(University of Mainz / PRISMA Cluster of Excellence)

Brda 2016 Workshop Medana, Slovenia III.

Based on work done in collaboration with Michael J. Baker arXiv:1608.07578

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JG U

- Thermal freeze-out
 - $\chi\chi \leftrightarrow SM SM$ in equilibrium
 - At $m_{\chi}/T \gtrsim 25$, DM density too low to maintain equilibrium
 - DM abundance fixed henceforth

Image credit: Kolb Turner

- Thermal freeze-out
- Asymmetric DM
 - Particle-antiparticle asymmetry similar to the baryon asymmetry

- Thermal freeze-out
- Asymmetric DM
- Misalignment mechanism for axion DM
 - Scalar field oscillates about shallow potential minimum

- Thermal freeze-out
- Asymmetric DM
- Misalignment mechanism for axion DM
- Dodelson–Widrow mechanism for sterile neutrino DM
 - Oscillations between active and sterile neutrinos
 - Hard interactions collapse wave function into pure ν_s (~ sin² 2θ) or pure ν_a (~ 1 − sin² 2θ)
 - After many interactions, significant ν_s abundance can be produced.

This talk: Temporarily unstable DM

- Initial overabundance reduced by DM decay
- Electroweak phase transition stabilizes DM
 - Relic density frozen

Consider SM + complex scalar S

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

 $- \mu_{S}^{2} S^{\dagger} S + \lambda_{S} (S^{\dagger} S)^{2} + \lambda_{\rho} (H^{\dagger} H) (S^{\dagger} S)$

- S charged under dark sector Z₂
- S carries hypercharge -1

Consider SM + complex scalar S

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

 $- \mu_{\mathcal{S}}^{2} \mathcal{S}^{\dagger} \mathcal{S} + \lambda_{\mathcal{S}} (\mathcal{S}^{\dagger} \mathcal{S})^{2} + \lambda_{\rho} (\mathcal{H}^{\dagger} \mathcal{H}) (\mathcal{S}^{\dagger} \mathcal{S})$

- S charged under dark sector Z₂
- S carries hypercharge -1

Add DM fermion χ

 $\mathcal{L} \supset y_{\tau}\overline{L_{\tau}}H\tau_{R}^{-}+y_{\chi}S^{\dagger}\overline{\chi}\tau_{R}^{-}+h.c.$

- χ unstable when $\langle S \rangle \neq 0$

Consider SM + complex scalar S

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

 $- \mu_{\mathcal{S}}^{2} \mathcal{S}^{\dagger} \mathcal{S} + \lambda_{\mathcal{S}} (\mathcal{S}^{\dagger} \mathcal{S})^{2} + \lambda_{\rho} (\mathcal{H}^{\dagger} \mathcal{H}) (\mathcal{S}^{\dagger} \mathcal{S})$

Evolution of $\langle S \rangle$ and $\langle H \rangle$:

- Universe starts out with $\langle S \rangle = \langle H \rangle = 0$
 - Scalar potential dominated by thermal corrections
- 2 As T drops, $\langle S \rangle$ develops vev
 - DM unstable
- At even lower T, H develops vev
- Feedback of $\langle H \rangle$ through Higgs portal λ_p changes sign of $S^{\dagger}S$ term
 - $\langle S \rangle = 0$
 - DM stabilized again

Four types of contributions:

Tree level

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$ $-\mu_S^2 S^{\dagger} S + \lambda_S (S^{\dagger} S)^2 + \lambda_p (H^{\dagger} H) (S^{\dagger} S)$

Four types of contributions:

Tree level

$$\begin{split} \boldsymbol{V}^{\text{tree}} &= -\mu_H^2 \boldsymbol{H}^{\dagger} \boldsymbol{H} + \lambda_H (\boldsymbol{H}^{\dagger} \boldsymbol{H})^2 \\ &- \mu_S^2 \boldsymbol{S}^{\dagger} \boldsymbol{S} + \lambda_S (\boldsymbol{S}^{\dagger} \boldsymbol{S})^2 + \lambda_p (\boldsymbol{H}^{\dagger} \boldsymbol{H}) (\boldsymbol{S}^{\dagger} \boldsymbol{S}) \end{split}$$

Coleman–Weinberg Coleman Weinberg 1973, Dolan Jackiw 1974

$$V^{\text{CW}} = \sum_{i} \frac{n_{i}}{64\pi^{2}} m_{i}^{4}(h, S) \left[\log \frac{m_{i}^{2}(h, S)}{\Lambda^{2}} - \frac{3}{2} \right]$$

$$Q + \chi + \chi + \chi + \chi + \chi$$

Four types of contributions:

Tree level

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

 $- \, \mu_{\mathcal{S}}^2 \mathcal{S}^{\dagger} \mathcal{S} + \lambda_{\mathcal{S}} (\mathcal{S}^{\dagger} \mathcal{S})^2 + \lambda_{\rho} (\mathcal{H}^{\dagger} \mathcal{H}) (\mathcal{S}^{\dagger} \mathcal{S})$

Coleman–Weinberg Coleman Weinberg 1973, Dolan Jackiw 1974

$$V^{CW} = \sum_{i} \frac{n_i}{64\pi^2} m_i^4(h, S) \left[\log \frac{m_i^2(h, S)}{\Lambda^2} - \frac{3}{2} \right]$$

One-loop finite T corrections Dolan Jackiw 1974

$$\ell^{T} = \sum_{i} \frac{n_{i} T^{4}}{2\pi^{2}} \int_{0}^{\infty} dx \, x^{2} \log \left[1 \pm \exp \left(-\sqrt{x^{2} + m_{i}^{2}(h, S)/T^{2}} \right) \right]$$

Q + X + X + + + ...

Four types of contributions:

Tree level

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$

 $-\,\mu_{\mathcal{S}}^2 \mathcal{S}^{\dagger} \mathcal{S} + \lambda_{\mathcal{S}} (\mathcal{S}^{\dagger} \mathcal{S})^2 + \lambda_{\rho} (\mathcal{H}^{\dagger} \mathcal{H}) (\mathcal{S}^{\dagger} \mathcal{S})$

Coleman-Weinberg Coleman Weinberg 1973, Dolan Jackiw 1974

$$V^{\text{CW}} = \sum_{i} \frac{n_i}{64\pi^2} m_i^4(h, S) \left[\log \frac{m_i^2(h, S)}{\Lambda^2} - \frac{3}{2} \right]$$

One-loop finite *T* corrections Dolan Jackiw 1974

$$V^{T} = \sum_{i} \frac{n_{i}T^{4}}{2\pi^{2}} \int_{0}^{\infty} dx \, x^{2} \log \left[1 \pm \exp\left(-\sqrt{x^{2} + m_{i}^{2}(h, S)/T^{2}}\right) \right]$$

Resummed "daisy" contributions Dolan Jackiw 1974, Carrington 1992

$$V^{\text{daisy}} = -\frac{T}{12\pi}\sum_{i}n_{i}\Big(\Big[m_{i}^{2}(h,S) + \Pi_{i}(T)\Big]^{\frac{3}{2}} - \Big[m_{i}^{2}(h,S)\Big]^{\frac{3}{2}}\Big)$$

Q + X + X + + + + ...

Evolution of DM abudance

Boltzmann equations

$$\dot{n}^{j}_{\chi}+\mathbf{3}Hn^{j}_{\chi}=-rac{\mathsf{\Gamma}}{\gamma^{j}}ig(n^{j}_{\chi}-n^{j,\mathsf{eq}}_{\chi}ig)$$

- n_{χ}^{j} ... number density in *j*-th momentum mode
- $n_{\chi}^{j,eq}$... equilibrium number density in *j*-th momentum mode
 - ... Hubble parameter
 - ... decay rate

Н

... relativistic gamma factor

Friedmann equation

$$\mathcal{H}^2 = \left(rac{\dot{a}}{a}
ight)^2 = rac{8\pi G_N}{3} (
ho_{\mathrm{SM}} +
ho_{oldsymbol{\chi}}) \,.$$

Evolution of DM abudance

Evolution of DM abundance

- Decays out of thermal equilibrium
- EWSB must be postponed to *T* ~ few GeV to give DM time to decay
 - Universe goes through supercooled state
 - Electroweak phase transition is strongly first order
 - \rightarrow electroweak baryogenesis?

Parameter space

Parameter space

Sucessful phenomenology in narrow sliver of parameter space

- But this is the sliver preferred by electroweak baryogenesis
- At other points:
 - Phase transition to early
 - Why not increase y_x?
 - \rightarrow Does not help, DM abundance will never drop below n_{χ}^{eq}

Summary

Summary

The Vev Flip-Flop

- is a new mechanism to set the DM relic density
 - ▶ Basic idea: DM temporarily unstable while \mathbb{Z}_2 symmetry is broken
- Works in limited parameter region
 - But this is the region favored by electroweak baryogenesis (strongly first order phase transition)

Summary

The Vev Flip-Flop

- is a new mechanism to set the DM relic density
 - ▶ Basic idea: DM temporarily unstable while \mathbb{Z}_2 symmetry is broken
- Works in limited parameter region
 - But this is the region favored by electroweak baryogenesis (strongly first order phase transition)

Future directions:

- More detailed collider pheno
- Switching annihilation on and off with a vev flip-flop
- Extended models (e.g. vev flip-flop in 2HDM)
- Building a model that incorporates electroweak baryogenesis

• . . .

Thank you!