
Four top-quarks at the LHC

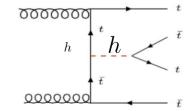
darius.faroughy@ijs.si

Brda 2017 Selected topics in high energy physics

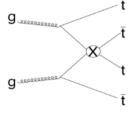
October 11 - 13 2017, Goriška Brda, Slovenia

Outline

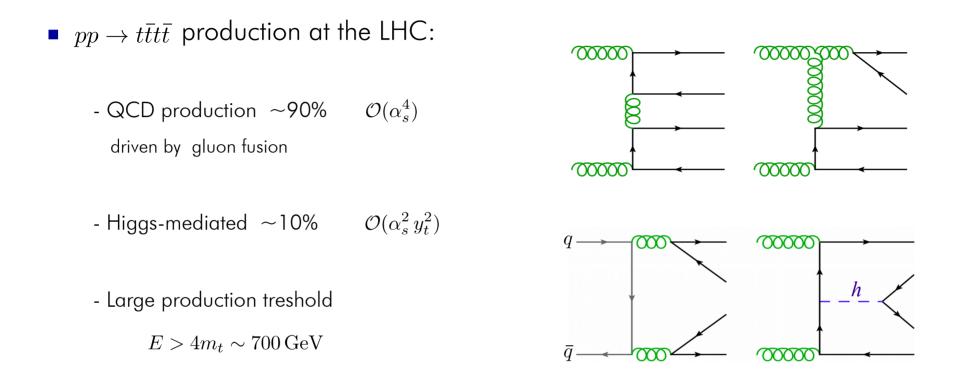
- Introduction
- Search strategy for Four-top production in the SM + Results
- Applications to (non-resonant) New Physics
- Based On: Four tops for LHC Alvarez, <u>DF</u>, Kamenik, Morales, Szynkman [Nucl. Phys. B 915 19 (2017)]


Introduction

- The top-quark is a special particle in the SM (and beyond), e.g.
 - only "free" quark (decays weakly before it hadronizes)
 - only fermion living at the EW scale
 - only fermion coupling to the Higgs boson at order 1
- Least explored quark experimentally: plenty of room for New Physics to pop up
- LHC : top-quark factory (~10M top-pairs in Run-1)
- Top-quark physics entering precision era:
 - Top-pair and single-top production
 - starting to measure associated production ttV, ttH
- Next step: explore rare top-quark processes
 - $pp \to t\bar{t}t\bar{t}$
 - Is this SM process accessible at the LHC? **YES!**
 - What are the implications for NP?



Some Motivations


- Interesting Beyond the SM scenarios for four-top production: top compositness, KK gluons, etc...
 - Heavy resonance decaying to top-pairs.
- Additional handle for top-quark effective field theory.
 - Only process that can give constraints on four-top operator, e.g. $\mathcal{O}_{4t} = (\bar{t}_R \gamma_\mu t_R) (\bar{t}_R \gamma_\mu t_R)$
 - Can give constraints on *qqtt* four-fermion operators **Cen Zhang** [1708.05928]
- Good place to search for effects of top-philic light mediators Ian Low's talk from yesterday
- Alternative probe for the top-quark Yukawa coupling at HL-LHC

Cao et al. [1602.01934]

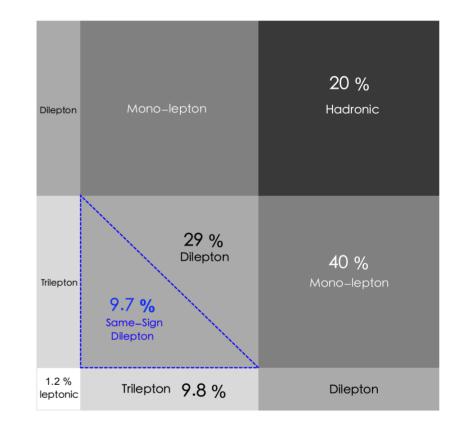
SM Four-tops at the LHC

• The 13 TeV production cross-sections at the LHC:

 $\sigma(pp \to t\bar{t}t\bar{t})^{LO} \approx 9 \,\mathrm{fb}$ $\sigma(pp \to t\bar{t}t\bar{t})^{NLO} \approx 12 \,\mathrm{fb}$

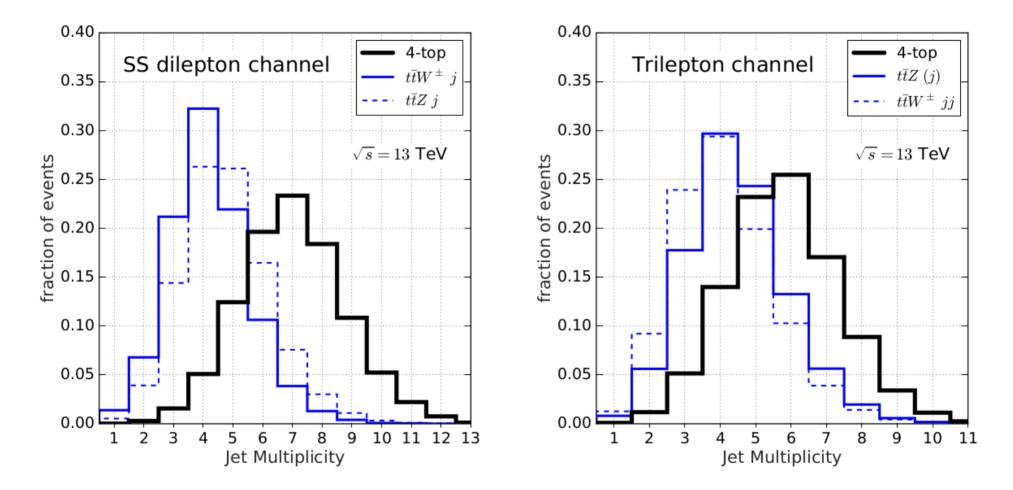
- Rare process: 5 orders of magnitude smaller than top-pair production \sim 30 times smaller than tth production

Four-top decay channels


• Four-top decay channels: $t\bar{t}t\bar{t} \rightarrow b\bar{b}b\bar{b} W^+W^-W^+W^-$

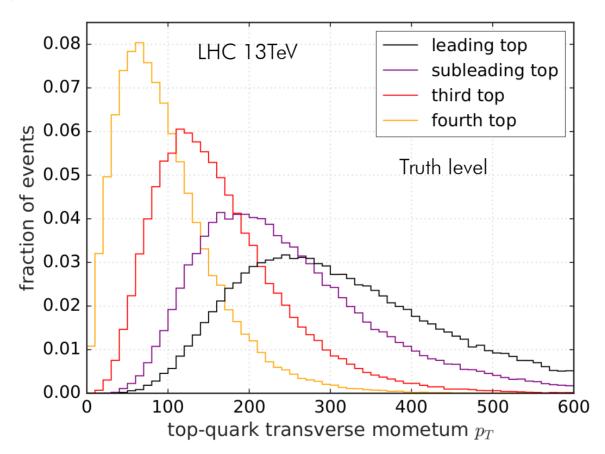
tīttī channels	leptons	N_{b-jets}	$N_{\rm jets}$
hadronic	0	4	8
mono-lepton	ℓ^{\pm}	4	6
OS dilepton	$\ell^+\ell^-$	4	4
SS dilepton	$\ell^\pm\ell^\pm$	4	4
trilepton	$\ell^\pm\ell^\pm\ell^\mp$	4	2
leptonic	$\ell^+\ell^-\ell^+\ell^-$	4	0

LHC search in Mono-lepton channel Current upper limit: ~5 x SM cross-section



- Promising channel: Same-sign dileptons
 Lillie, Shu, Tait [0712.3057]
 - Multi-lepton channels: Same-Sign dileptons and trileptons
 - Combined BR $\sim 20\%$
 - Lower particle multiplicity in final states
 - Lower backgrounds

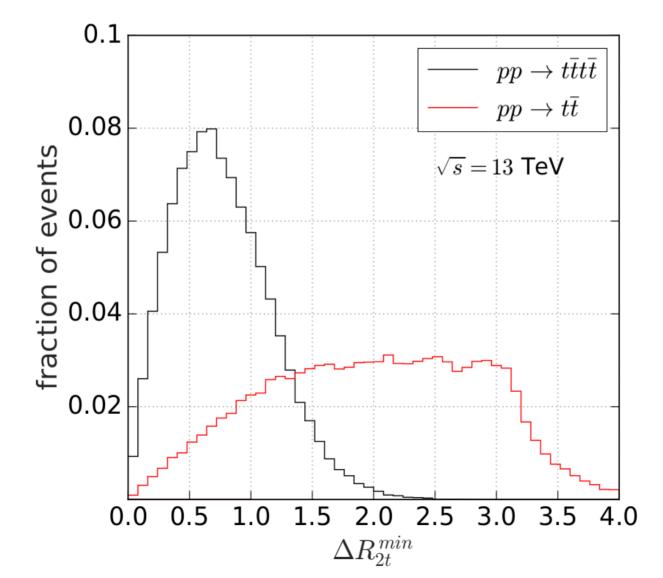
Signal features

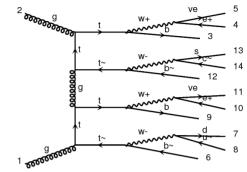

Large light-jet multiplicity distributions in the multi-lepton channels:

Several b-tagged jets: Good background discriminator

Signal features

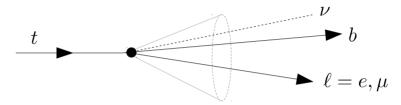
• Boosted tops in $pp \rightarrow t\bar{t}t\bar{t}$?




- 51% (28%) events contain at least one (two) boosted tops with p_T > 300 GeV
- Tops fly predominantly along the central direction (small rapidities).

SM Searches with subtructure techniques not worthed at LHC...

Signal features


- Crowded events with O(10) final states
- Expect accidental overlaps of top-decay products in detector

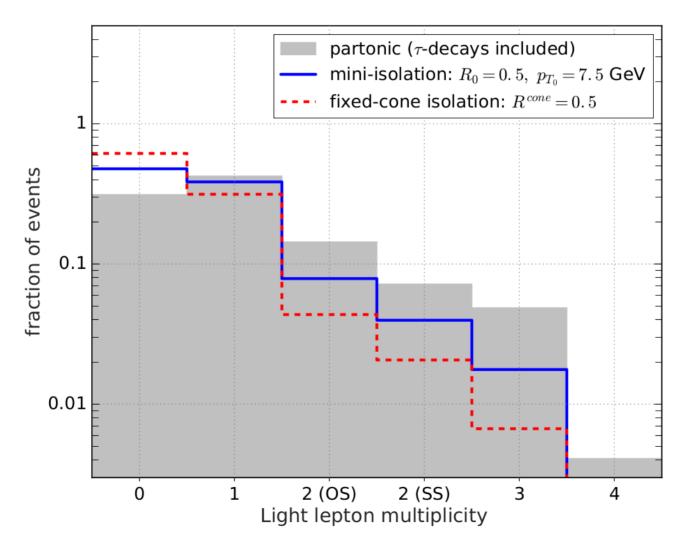
Leptonic isolation

- In four-top process:
 - accidental overlaps
 - boosted tops

Many signal leptons fail traditional isolation requirements Hence, dramatic drop in signal efficiency

"Traditional" leptonic isolation requirements:

$$I_{iso} \equiv \frac{p_T(\ell)}{\sum_{i \in R^{cone}} p_T(i)} \qquad I_{iso} < 1 - 10\% \qquad R^{cone} = 0.2 - 0.5$$


Fix: Mini-isolation requirements

$$\mathsf{p}_{\mathsf{T}}\text{-dependent cone:} \quad \mid \begin{array}{c} R^{cone}(p_T^\ell) = \frac{p_T^0}{p_T^\ell} \\ p_T^0 \sim 10 - 20 \, \mathrm{GeV} \end{array}$$

Rehermann, Tweedie [1007.2221]

Leptonic isolation

• $pp \rightarrow t\bar{t}t\bar{t} \rightarrow \dots$ plus leptonic isolation requierements

Mini-isolation is required for a four-top search in the multi-lepton channels

Four-top backgrounds

Irreducible backgrounds for Same-sign dilepton channel

Category	Backgrounds	1	σ [fb]	decay mode	$\sigma \times BR$ [fb]
$t\bar{t}W$	$t\bar{t} W^{\pm}$		350.4	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}}$	16.84
	$t\bar{t} W^{\pm} j$		167.8	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}}$	8.06
	$t\bar{t} W^{\pm} jj$		96.8	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}}$	4.65
	$t\bar{t} W^{\pm} jj$			$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\ell^{\mp}}$	1.58
	$t\bar{t} W^{\pm} bjj$		2.3	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}}$	0.11
	$t\bar{t} W^{\pm} b\bar{b} jj$		2.1	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}}$	0.10
$t\bar{t}Z$	$t\bar{t} Z$		583.3	$W_{\ell^{\pm}} W_{\text{had}} Z_{\ell}$	22.33
	$t\bar{t} \ Z \ j$		404.7	$W_{\ell^{\pm}} W_{\text{had}} Z_{\ell}$	15.50
	$t\bar{t} \ Z \ jj$		194.9	$W_{\ell^{\pm}} W_{\mathrm{had}} Z_{\ell}$	7.46
	$t\bar{t} \ Z \ jj$			$W_{\ell^{\pm}} W_{\ell^{\pm}} Z_{\ell}$	3.18
$t\bar{t}h$	$t\bar{t} h$		397.6	$W_{\ell^{\pm}} W_{\text{had}} W_{\ell^{\pm}} W_{\text{had}}$	4.70
	$t\bar{t} h$			$W_{\ell^{\pm}} W_{\text{had}} Z_{\ell} Z_{\text{had}}$	0.37
	$t\bar{t} h$	-	401.3	$W_{\ell^{\pm}} W_{\text{had}} \tau_{\ell^{\pm}} \tau_{\text{had}}$	2.18
Others	$tZ \ bjj$		176.7	$W_{\ell^{\pm}} Z_{\ell}$	4.52
	$t\bar{t} W^+W^-$		8.0	$W_{\ell^{\pm}} W_{\text{had}} W_{\ell^{\pm}} W_{\text{had}}$	0.57
	$t\bar{t} W^+W^-$			$W_{\ell^{\pm}} W_{\text{had}} W_{\ell^{+}} W_{\ell^{-}}$	0.39
	$W^{\pm}W^{\pm} b\bar{b}jj$		1.25	$W_{\ell^{\pm}} W_{\ell^{\pm}}$	1.94
	$ZZ \ b \overline{b} j$		30.2	$Z_\ell \ Z_\ell$	0.31
Signal	$t\bar{t}t\bar{t}$	-	9.2	$W_{\ell^{\pm}} W_{\ell^{\pm}} W_{\text{had}} W_{\text{had}}$	0.66

Reducible backgrounds (mis-reconstructed objects in detector)

- Fake leptons $j \to \ell^{\pm}$ $t\bar{t} \to (b\nu\ell^+) (jjb) \longrightarrow (b\nu\ell^+) (\ell^+jb)$ $\epsilon_{j\to\ell} \sim 10^{-4}$ - Electron charge-flip $e^{\pm} \to e^{\mp}$ $t\bar{t} \to (b\nu\ell^+) (b\nu\ell^-) \longrightarrow (b\nu\ell^+) (b\nu\ell^+)$ $\epsilon_{e^{\pm}\to e^{\mp}} \sim 10^{-3}$

Similar for the trilepton channel... but no charge-flip reducible background!

LHC search strategy

Simple non-invasive search strategy:

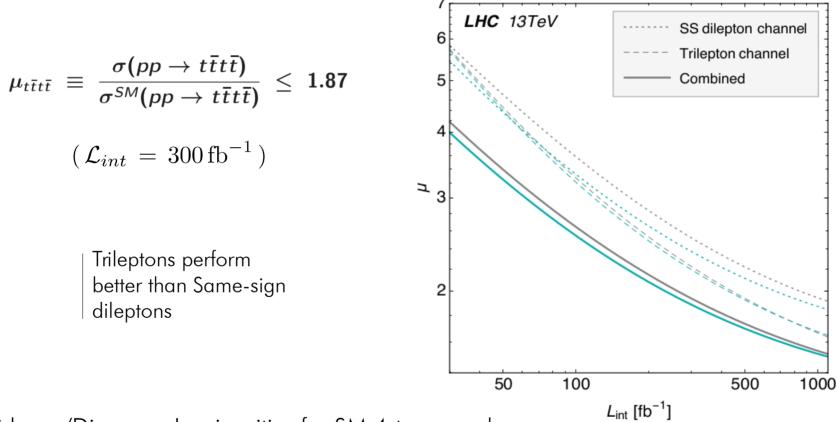
- Optimized leptonic **mini-isolation**
- Same-sign dilepton channel:
 - Exactly one SS dilepton (events with additional leptons are vetoed).
 - Jet multiplicity (of any flavor) satisfying $N_j \ge 6$.
 - *b*-jet multiplicity satisfying $N_b \geq 3$.
- Trilpeton channel:
 - Exactly three charged leptons (events with additional leptons are vetoed).
 - Jet multiplicity (of any flavor) satisfying $N_j \ge 4$.
 - b-jet multiplicity satisfying $N_b \geq 3$.
 - A Z-mass window veto: 75 GeV $< m_{\ell^+\ell^-} < 110$ GeV

Experimental collaborations can include additional cuts if necessary at higher lumi

LHC projections

Results for each separate multi-lepton channel:

Same-sign dileptons			Trileptons				
$\mathcal{L}{=}300~{ m fb}^{-1}$	$\mathbf{SR6j}$	$\mathbf{SR7j}$	SR8j	$_\mathcal{L}{=}300~{ m fb}^{-1}$	SR4j	$\mathbf{SR5j}$	$\mathbf{SR6j}$
$N_{\rm exp}$	139(171)	85 (101)	43 (51)	$N_{ m exp}$	31 (32)	25 (26)	17(17)
tīttī	16.7	13.5	8.9	tttt	8.6	7.8	6.0
$t\bar{t}W$	60.7	35.0	17.1	$t\bar{t}Z$	9.9	8.0	5.1
$t\bar{t}Z$	32.1	20.3	10.7	$t\bar{t}W$	6.7	4.9	2.9
$t\bar{t}h$	5.5	3.1	1.3				
Fakes	12.5(17.3)	7.1 (9.8)	3.3(4.6)	$t\bar{t}h$	2.3	1.8	1.2
Q-flip	7.6 (34.4)	3.7(16.6)	1.6(7.4)	Fakes	2.5 (3.5)	1.7 (2.4)	0.9(1.3)
Other	4.4	2.4	1.0	Other	1.4	1.0	0.5
S/B	0.14 (0.11)	0.19 (0.15)	0.26 (0.21)	\mathbf{S}/\mathbf{B}	$0.38 \ (0.36)$	$0.45 \ (0.43)$	0.57 (0
$\mathbf{S}^{'}/\sqrt{\mathbf{B}}$	1.51(1.34)	1.60(1.44)	1.53(1.37)	${f S}/\sqrt{f B}$	1.80(1.76)	1.87(1.84)	1.84 (1


$$\epsilon_{j \to \ell} = 7.2 \times 10^{-5} \quad (10^{-4})$$

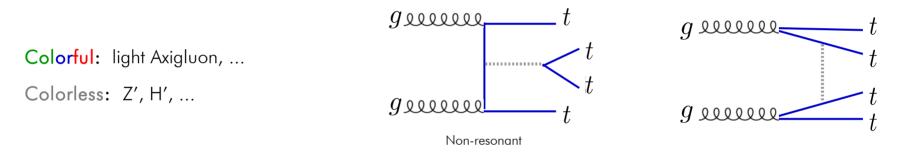
 $\epsilon_{e^{\pm} \to e^{\mp}} = 2.2 \times 10^{-3} \quad (10^{-3})$

Faking probabilities estimated from fiting MC simualtions to data driven estimations

Same-sign Dilepton results are quite sensitive to reducible background yield estimations...

LHC projections

Combined 95% CL upper limits for SM 4-top production in the multi-lepton channels:


Evidence/Discovery Luminosities for SM 4-top search:

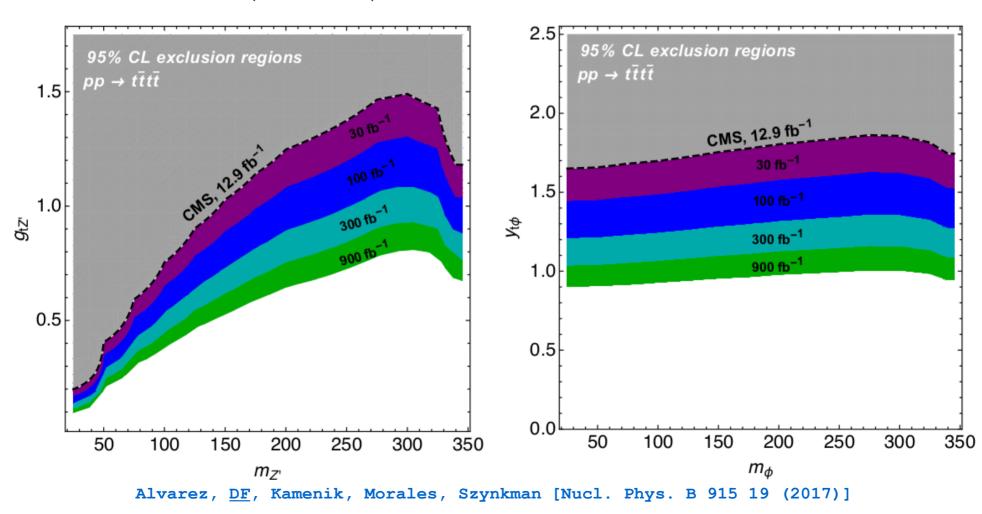
Reducible Backgrds estimate	Evidence (3σ)	Discovery (5 σ)
$\epsilon_{ m fake} \simeq 7.2\! imes\!10^{-5}, \epsilon_{ m Qflip} \simeq 2.2\! imes\!10^{-4}$	$215 { m fb}^{-1}$	$1060 { m ~fb^{-1}}$
$\epsilon_{ m fake} \simeq \epsilon_{ m Qflip} \simeq 0$	98 fb $^{-1}$	420 fb $^{-1}$

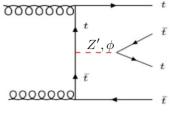
Alvarez, DF, Kamenik, Morales, Szynkman [Nucl. Phys. B 915 19 (2017)]

New Physics: Low-mass top-philic models

- New state coupled to top-quark below treshold $m_X < 2m_t$
 - SM-like kinematics
 - Just enhancement of 4-top cross-section

- Relevant for NP resolutions for B-anomalies:
 - low-mass W' resolution of $B \rightarrow D^{(*)} \tau \nu$ anomalies
 - low-mass Z' model for $b
 ightarrow s \mu \mu$ anomalies @1 loop


see <u>DF</u>, Greljo, Kamenik [1704.06005]


- Kamenik, Soreq, Zupan [1704.06005]
- Relevant for top-philic Dark Matter models (scalar mediator) Arina et al [1605.09242]
 See also Jackson, Servant, Shaughnessy, Tait, Taoso [0912.0004]

Two benchmark models:

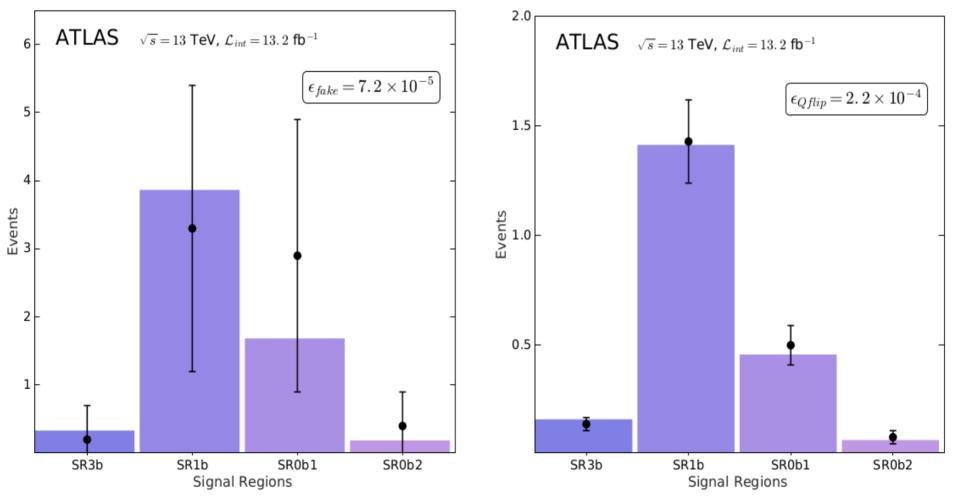
$$\mathcal{L} \supset -g_{tZ'} Z'_{\mu} \left(\bar{t}_R \gamma^{\mu} t_R \right) \qquad m_{Z',\phi} < 2m_t$$
$$\mathcal{L} \supset -y_{t\phi} \phi \left(\bar{t}_L t_R \right) + \text{h.c.}$$

Limits from multi-lepton four-top search:

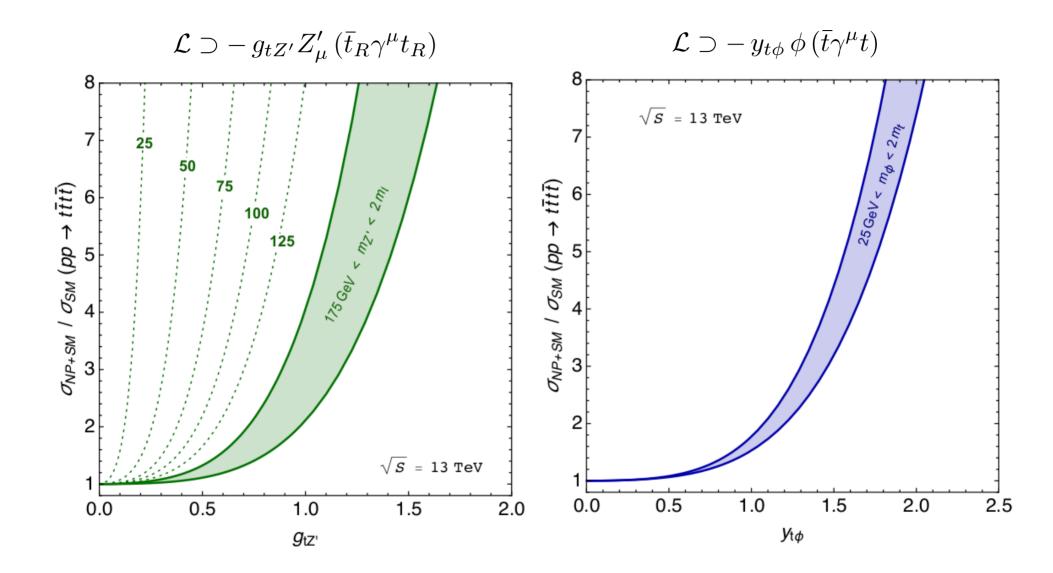
Conclusions

- The LHC can (and should) start exploring rare processes in top-quark physics such as four-top production. The four-top process is not a monster.
- Interesting BSM apear in four-top production:
 - resonant production
 - low-mass mediators or EFT (non-resonant)
- We presented for the first time a realistic SM four-top search strategy in the multi-lepton channel:
 included irreducible backgrounds (fakes + Q-flips) for the first time.
 - trileptons performs better than same-sign dileptons)
- We expect the four-top produciton in the SM to be accessible at the LHC in the multilepton channel: possibly 3 sigma evidence at 300 fb⁻¹ and a discovery at HL-LHC.
- BSM:
 - extracted bounds for low-mass top-philic mediators (scalar and Z') relevant for DM models and B-anoamlies.
 - Four-top production is also relevant for setting competetive constrains on top-quark four-fermion operators.

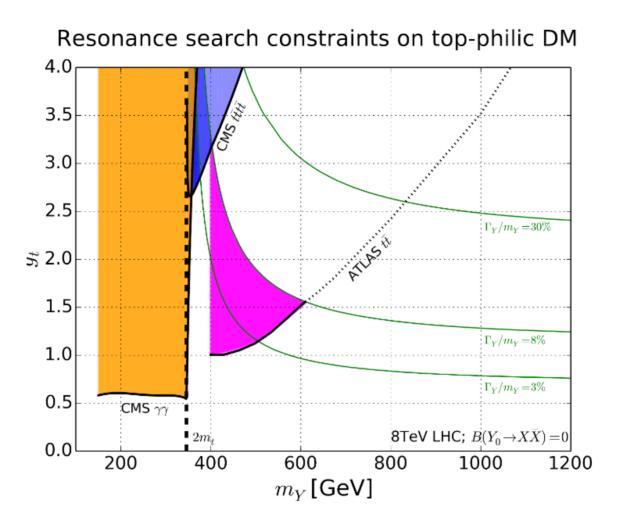
THANK YOU!



Fakes & Q-flips


How to estimate probabilities more accurately? Curtin, Galloway, Wacker [1306.5695]

- Perform MC simulations of all SM process that will contribute to fake lepton or Q-flip mis-id:


- Fit fake/Qflip probabilities to background estimations by ATLAS or CMS

Signal Regions from ATLAS-CONF-2016-037

 $\kappa_t \leq 2.2 \text{ for } \mathcal{L} = 100 \text{ fb}^{-1} \text{ and } \kappa_t \leq 1.2 \text{ for } \mathcal{L} = 500 \text{ fb}^{-1}.$

Top compositness:

$$\frac{g_S}{\Lambda^2} \left\{ g_1 \left[\left(H \overline{Q}_3 \right) \sigma^{\mu\nu} \lambda^a P_R t \right] G^a_{\mu\nu} + g_2 \left[\overline{t} \gamma^\mu \lambda^a D^\nu P_R t \right] G^a_{\mu\nu} \right\}$$