Emerging jets with flavour

Pedro Schwaller (JGU Mainz)

Selected topics in high energy physics Brda, Slovenia October 13, 2017

Based on: Bai, PS, 1306.4676; PS, Stolarski, Weiler, 1502.05409; S. Renner, PS, in progress

Outline

• Dark Matter: Motivation to go beyond WIMPs

QCD Like Dark Sectors

• Emerging Jets at the LHC

• The flavour portal and consequences

Dark Matter

Astrophysical observations and simulations

Nature & interactions with visible matter unknown

What is the Dark Matter?

Standard candidate: WIMP

• Stable, neutral, weakly interacting particle X

Consider alternatives

A hint from nature?

Composition of energy density of the universe today!

$\rho_{\rm DM} \approx 5 \times \rho_B$

A hint from nature? $\rho_{\rm DM} \approx 5 \times \rho_B$

Asymmetric DM $\rho_{\rm DM} \approx 5 \times \rho_B$ QCD dynamics $= m_p n_B$ $= m_{\rm DM} n_{\rm DM}$ $\rho_{\rm DM}$ Asymmetric Dark Matter e.g. Nussinov; Barr; Barr, Chivukula, Farhi; Gudnason, Kouvaris, Sannino; Kitano, Low; Luty, Kaplan, Zurek; Buckley, Randall; Davoudiasl, Morrissey, Sigurdson, Tulin; Shelton, Zurek; Falkowski, Rudermann, Volanski; N. Rius et al; S. Davidson et al; Servant, Tulin; ...

Reviews: Petraki, Volkas, 2013; Zurek 2013;

Dark QCD

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale
 - $\Lambda_{\mathrm{darkQCD}}$
- DM is composite
 "dark proton"
- "Dark pions" unstable, long lived

Today: Focus on Phenomenology

Particle content

- Dark "protons" p_d with conserved DM number
- Dark pions π_d and other composite states
 - Not protected by symmetries, $\pi_d
 ightarrow {
 m SM}$ allowed
- Mediators:

 Bifundamental scalar Φ 	$\mathcal{L} \supset \kappa \Phi ar{Q}_D d_R$

▶ or Z' (Hidden Valleys!)

 $\mathcal{L} \supset g' \bar{Q}_D \gamma^\mu Q_D Z'_\mu$

+ couplings to SM

Dark Pion Lifetime

• Integrate out mediator, match to dark pion current

• Decay to SM jets (pions)

$$\Gamma(\pi_d \to \bar{d}d) \approx \frac{f_{\pi_d}^2 m_d^2}{32\pi M_{X_d}^4} m_{\pi_d}$$

$\begin{array}{c} \overline{q} \\ \text{Dark Pion Life time} \\ q \end{array}$

$$\Gamma(\pi_d \to \bar{d}d) \approx \frac{f_{\pi_d}^2 m_d^2}{32\pi M_{X_d}^4} m_{\pi_d}$$

$$c\tau \approx 5 \,\mathrm{cm} \times \left(\frac{1 \,\,\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{100 \,\,\mathrm{MeV}}{m_\mathrm{d}}\right)^2 \left(\frac{1 \,\,\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{M_{X_d}}{1 \,\,\mathrm{TeV}}\right)^4$$

Decay in LHC detectors!

Collider Signature

• Pair production of heavy bi-fundamental fields:

- Decay to quark dark quark pairs
 - two QCD-jets
 - two "Emerging Jets": dark quarks shower and hadronize in dark sector decay back to SM jets with displaced vertices

Also "Hidden Valley" signature Strassler, Zurek, 2007; ... related: SIMP dark matter Bai, Rajaraman, 2011

Emerging Jets at the LHC

- Characteristic:
 - few/no tracks
 in inner tracker
- New "emerging" jet signature
- Universal for large class of composite DM models!

PS, Stolarski, Weiler, 2015

Reach ATLAS/CMS

- Optimistic scenario (no non-collisional BGs)
- Also sensitive to some RPV SUSY models etc

PS, Stolarski, Weiler, 2015

Adding flavour

- So far, assumed universal lifetime for dark pions
- Actually

$$\lambda \bar{d}_R Q_L \Phi = \lambda_{ij} \bar{d}_{Ri} Q_{Lj} \Phi$$

• Not all pions are equal:

Flavour matters

dark pion properties

fixed target experiments

Flavour constraints

Parameterisation from Agrawal, Blanke, Gemmler, 2014

- For degenerate dark quark masses, can absorb V
- If $D \propto 1$, SM flavour symmetry unbroken

• Write
$$D = \left(\lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))\right)$$

• Absent in $D = \lambda_0 \cdot 1$ limit!

$$\left(\sum_{i=1}^{3} \lambda_{qi} \lambda_{q'i}^{*}\right)^{2} = \left(\left[UD(UD)^{\dagger}\right]_{qq'}\right)^{2} = \lambda_{0}^{4} \left(\left[UU^{\dagger}\right]_{qq'}\right)^{2} = 0$$

 $\Delta F=2$

 Otherwise bounds on mixing

 $U = U_{12}U_{13}U_{23}$

matrix

$\Delta F = 1$

• Allows rare decays

 $B \to (K, \pi) + \text{invisible}$ $K \to \pi + \text{invisible}$

• Strongest close to thresholds:

 $K \to \pi \, \pi_D$ wins over $K \to \pi \, Q \bar{Q}$

• Don't vanish in flavour symmetric limit!

$\Delta F = 1$

 Best bound on couplings for very light dark pions

Emerging jets revisited

• Range of dark pion lifetimes

Scenario	Flavour composition	$c au_0\lambda_0^4\ /mm$	$c au_0 \lambda_0^4 / mm$
		$\left \left(m_{\pi_D} = f_{\pi_D} = 2 \text{GeV} \right) \right $	$\left \begin{array}{c} (m_{\pi_D} = f_{\pi_D} = 15 \text{GeV}) \end{array} \right $
Aligned	Diagonal	88.6	1.08×10^{-4}
	$ar{Q}_1 Q_2$	88.6	0.210
	$ar{Q}_1 Q_3$	Long-lived	1.08×10^{-4}
	$ar{Q}_2 Q_3$	Long-lived	1.08×10^{-4}
$\sin \theta_{12} = 0.1,$	Diagonal	86.5	1.72×10^{-3}
$\Delta_{12} = 0.5$	$\bar{Q}_1 Q_2$	40.0	9.48×10^{-2}
	$ar{Q}_1 Q_3$	Long-lived	1.92×10^{-4}
	$ar{Q}_2 Q_3$	Long-lived	4.25×10^{-4}
$\sin\theta_{13} = 0.05,$	Diagonal	88.6	3.37×10^{-4}
$\Delta_{13} = 0.5$	$\bar{Q}_1 Q_2$	56.9	2.29×10^{-2}
	$\bar{Q}_1 Q_3$	5.7×10^{6}	1.23×10^{-4}
	$ar{Q}_2 Q_3$	2.27×10^{5}	1.91 × 10 ⁻⁴

Emerging jets revisited

- "Visible" jet fraction as function of distance modified
- New flavour compositions
 - e.g. prompt decays to B's, displaced decays to light flavours
- Sometimes detector stable mesons
 - Comparison with Z' mediator: Ratio of unstable to stable pions only depends on n_f

Fixed target

• e.g. NA62:

30

Fixed target

 Initially negative, direct production rate too low

- But, produce 10¹¹ B-mesons, countless Kaons
- Up to 10⁶ dark pions if bound on rare decays is saturated!
 - Very promising, work in progress

Summary

- "Dark QCD" motivated in many BSM scenarios, in particular: DM and Naturalness
- Emerging jets are smoking gun, good prospects for ATLAS/CMS
 - Test TeV scale mediators without MET or Leptons
- Flavour adds new dimension to emerging jets phenomenology
- Interesting opportunity for fixed target experiments

Thank You

The Dark Phase Transition

QCD Phase Diagram

 $m_{u,d}$

Phase Diagram II

SU(N) - PT

- Consider $SU(N_d)$ with n_f massless flavours
- PT is first order for
 - $N_d \geq 3$, $n_f = 0$
 - + $N_d \geq 3$, $3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

- Not for:
 - $n_f = 1$ (no global symmetry, no PT)
 - $n_f = 2$ (not yet known)

GW Signal

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

• Redshift:

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$

• Peak regions: $k/\beta \approx (1-10)$ $f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$

T* ~ Few GeV

Summary

- QCD like dark sectors motivated in many models
- Emerging jets are "smoking gun", good prospects for ATLAS/CMS

 Gravitational waves are independent probe of dark sector phase transition

Supplemental Material

Check dark shower w/ meson multiplicity

e.g. Ellis, Stirling, Webber

Figure 11: Average dark meson multiplicity in $e^+e^- \rightarrow Z'^* \rightarrow \bar{Q}_d Q_d$ as a function of the centre-of-mass energy \sqrt{s} . We compare the output of the modified PYTHIA implementation for $n_f = 7$ (blue circles) and $n_f = 2$ (red squares) to the theory prediction Eqn. (15), where we only float the normalisation. The dark QCD scale and dark meson spectrum corresponds to benchmark model B.

Validity of two loop FP

- SU(2) with 10 fundamental fermions
- 1-4 loop beta functions
- two loop estimate for fixed point is reliable in weak coupling regime

Model distribution

46

Open Questions/Outlook

- Flavour
- Dark matter bound state formation (dark BBN)
- Different mediators (triggers!)
- Alternative dark pion searches (heavy flavour decays, direct production LHCb, SHIP)
- Model building

LHCb opportunities

• Z' mediator is difficult to trigger at ATLAS/CMS Same if dominant production is off-shell

- Reconstruct individual dark pions, differentiate using lifetime, mass, decay products
- Emerging jets without (hard) trigger requirements?

Off-shell production

• Total rate:
$$\sigma(pp \to \bar{Q}_D Q_D) \approx 8.2 \text{ pb} \times \left(\frac{\text{TeV}}{\Lambda}\right)^4 \times N_d \times N_F$$

Forward region

• Fraction of all signal events with N dark pions in $2 < \eta < 5$

• Momentum (not pT) distribution of dark pions in $2 < \eta < 5$

Decay characteristics

- Number of charged tracks from dark pion decays
- Also depend on flavour structure some more work!

Very very (very) rough estimate

- 20 inverse fb
- Assume that events with 3 or more reconstructed dark pions are significantly different from QCD (i.e. no background)
- 10% reconstruction efficiency
- Sensitivity to $\sigma=8~{
 m fb}$, corresponds to $\Lambdapprox 5~{
 m TeV}$

Composite DM

- Introduce new $SU(N_d)$ "dark QCD", dark quarks Q_D
- Dark Matter is dark baryon with mass ~ $\Lambda_{\rm darkQCD}$

Relating the scales

- Option 1: Mirror world
 - α_s and α_d related at high (GUT) scale through parity symmetry, identical running below
 - need small breaking
 - cosmology nontrivial ($N_{\rm eff}$, structure formation)
- Here:

Relate α_s and α_d dynamically at an intermediate scale $M \sim {\rm TeV}$

+ Obtain $\Lambda_{darkQCD} \sim \Lambda_{QCD}$ "naturally"

Relating the scales $I_{g} = g^*$

• Infrared Fixed Points: $\beta(g)$

$$\frac{dg}{dt} = \beta(g) = 0$$

for
$$g = g^*$$

- Perturbative solutions can exist for specific particle content (i.e. choices of ${\cal N}_{\cal F}$)
- Bi-fundamentals of $SU(3)_{\rm QCD} \times SU(3)_{\rm darkQCD}$ relate the fixed point solutions at the two loop level

$$\begin{array}{c} \textbf{Two loop } \beta\textbf{-function} \\ \textbf{number of quarks} (N_c) \times SU(N_d) \\ \beta_c(g_c,g_d) = \frac{g_c^3}{16\pi^2} \begin{bmatrix} \frac{4}{3}T(R_f)(n_{fc} + N_d n_{fj}) - \frac{11}{3}C_2(G_c) \end{bmatrix} & \textbf{1-Loop} \\ + \frac{g_c^3}{(16\pi^2)^2} \begin{bmatrix} \left(\frac{20}{3}C_2(G_c) + 4C_2(R_f)\right) T(R_f)(n_{fc} + N_d n_{fj}) - \frac{34}{3}C_2^2(G_c) \end{bmatrix} & \frac{2\text{-Loop}}{\text{single}} \\ + \frac{g_c^3g_d^2}{(16\pi^2)^2} \begin{bmatrix} 4C_2(R_f)T(R_f)N_d n_{fj} \end{bmatrix} & \frac{2\text{-Loop}}{\text{mixed}} \\ \beta_c = \beta_d \text{ number of bj-functamentals} \\ \beta_c = \beta_d \text{ number of bj-functamentals} \\ \textbf{4}\pi & \textbf{4}\pi \\ \textbf{5} \\ \textbf{5} \\ \textbf{6} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\$$

Cut Efficiencies

Signal

Background

 Factor 100-1000 improved S/B per jet, compared to ordinary 4-jet search

Side note: Relating the scales

• Bi-fundamental fields decouple at scale M

$$\frac{\Lambda_{\rm QCD}}{\Lambda_{\rm dark}} \approx e^{\frac{2\pi}{b_c \alpha_c^*} \left(1 - \frac{b_c \alpha_c^*}{b_d \alpha_d^*}\right)}$$

Asymmetry

- Produce asymmetry in bi-fundamentals from heavy particle decay (à la Leptogenesis)
- Decay to quarks and dark quarks (color conservation) → equal B and D
- Including sphalerons: $\frac{|n_D|}{n_B} = \frac{\frac{|n_D|}{79}}{\frac{n_B}{56}} \approx \frac{79}{56} \approx \frac{7}{5}$
- Example:

$$\frac{\rho_{DM}}{\rho_B} = \frac{7}{5} \frac{3.5 \text{ GeV}}{0.94 \text{ GeV}} \approx 5 \qquad \stackrel{V}{\sim} \approx 5 \qquad \text{``naturally''}$$

Features

- Relic density fine, without direct detection trouble
- Symmetric component annihilation:
 - $p_D \bar{p}_D \rightarrow \pi_D \pi_D$ very efficient
 - $\pi_D \to SM$ transfers entropy back to SM
- DM self interaction mediated by dark pions, might help with structure formation issues

Generic properties of "dark QCD" models worth studying their phenomenology!