Simulating P_c^+ channel in the lattice QCD

Urša Skerbiš

ursa.skerbis@ijs.si in collaboration with: Saša Prelovšek

October 13th, 2017

Overview

Motivation

Quick introduction to hadron spectroscopy in LQCD Path integral in LQCD Scattering of two hadrons on the lattice

Pentaquark state through eyes of LQCD

First results

Single hadron spectrum Obtaining operators for states with desired quantum numbers Results for scattering

Conclusion

Motivation

Most hadrons are hadronic resonances. Some of them decay strongly and can be studied on the lattice.

$$H_1 + H_2 \rightarrow R \rightarrow H_1 + H_2$$

- Study of scattering on the lattice is similar to scattering in experiment.
- In 2015 charmed pentaquark state P⁺_c, decaying into N + J/ψ was discovered by LHCb (LHCb; PRL, 2015(115),072001).

$$N + J/\psi \rightarrow P_c^+ \rightarrow N + J/\psi$$

- Two states were observed:
 - lower state with $J = \frac{3}{2}$, mass $m_{P_c^+} = 4380 \pm 8$ MeV and width $\Gamma = 205 \pm 18$ MeV • upper state with $J = \frac{5}{2}$, mass $m_{P_c^+} = 4449.8 \pm 1.7$ MeV and width $\Gamma = 39 \pm 5$ MeV
 - states have oposite parity. It is not clear which state is positive and which negative under parity transformation.
- Study of this channels was not performed on the lattice yet.

Basics of LQCD

- Discretization of QCD equations in Euclidian space
- Periodic boundary conditions in space
- Quarks (fermionic fields) live in corners of lattice
- connected are with gluons (quants of gauge field)

Figure: Magenta dots (quarks, ψ) are connected with yellow lines (gluon A_{μ})

Path integral in LQCD

Calculation of physically observable quantity

- 1. Expected value of operator
- 2. Feynman path integral
- 3. Correlation function (matrix)

Path integral $\langle \Omega | O_i(t) O_j^{\dagger}(0) | \Omega \rangle = \frac{\int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A_{\mu} O_i(t) O_j^{\dagger}(0) \exp^{-S_G(A_{\mu})} \exp^{-S_F(\psi,\bar{\psi},A_{\mu})}}{\int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A_{\mu} \exp^{-S_G(A_{\mu})} \exp^{-S_F(\psi,\bar{\psi},A_{\mu})}}$

Correlation function $C_{ij} = \langle \Omega | O_i(t) O_j^{\dagger}(0) | \Omega \rangle$, $O = H_1 H_2$, where H is a hadron operator

$H_1 + H_2 \longleftrightarrow R$

 Information about hadronic resonances are calculated with simulation of several operators for initial and final state

m_R and Γ determination

- 1. n interpolator O_i in simulation
- 2. Result of simulation: $n \times n$ matrix C
- 3. Energy spectral decomposition: $E_n(L)$
- 4. Luscher's Equation: $E \rightarrow \delta(E)$
- 5. Scattering matrix: T(E), $(T(E) \propto \sigma)$
- 6. Determination of : m_R and Γ

Usefull relations

- **Discrete value of momentum:** $p = \vec{N} \frac{2\pi}{l}, \vec{N} \in \mathbf{N}^3$
- Energy of two hadrons in a box: $E(L) = \sqrt{m_1^2 + p_1^2} + \sqrt{m_2^2 + p_2^2} + \Delta E$
- Correlation function: $C_{ij}(t) = \langle \Omega | O_i(t) O_i^{\dagger}(0) | \Omega \rangle$
- Energy spectral decomposition: $C_{ij}(t) = \sum_{n} \langle \Omega | O_i(t) | n \rangle \langle n | O_j^{\dagger}(0) | \Omega \rangle \exp^{-E_n t}$
- Scattering matrix: $S(E) = \exp^{2i\delta(E)}, S(E) = 1 + 2iT(E)$
- Breit-Wigner resonances:

$$T(E) = \frac{-E\Gamma}{E^2 - m_R^2 + iE\Gamma}, \Gamma(E) = g^2 \frac{p^{2l+1}}{E^2}$$

Example: ρ resonance on the lattice

Older results but neat example. (S. Prelovsek et al.: PRD 84, (2011),054503)

Strong decay of P_c^+

- Pentaquark consists of 4 quarks (u, u, d, c) and 1 antiquark (c̄)
- Simulation are made in approximation of 1 channel scattering for $J/\psi-p$
- Simulations are made for total momentum $\vec{P} = \vec{p}_{H_1} + \vec{p}_{H_2} = 0$
- Resonance is possible to see in cases where momentum of single particle $|p_{H_i}| \ge 1$
- It should be sufficient to study scattering until $|p_{H_i}| = \sqrt{2}$, we should be able to see both P_c^+ states

Dispersion relation: $E \approx \sqrt{m^2 + p^2}$

Introduction to single hadron results

- Properties of used lattice $\frac{N^3 \times N_T \quad a[\text{fm}] \quad L[\text{fm}] \quad \#\text{config} \quad m_{\pi}[\text{MeV}]}{16^3 \times 32 \quad 0.1239(13) \quad 1.98 \quad 280 \quad 266(3)}$
- On used lattice both used hadrons were simulated before by SP, CBL and their groups
- This is a good test of our code

 $\mathsf{Expected}$ energies of observed hadrons on used lattice measured by other authors

state	value (<i>ma</i>)	error	fit range
nucleon (ground state)	0.672	0.004	[6,12]
J/ψ (ground state)	1.54171	0.00043	[3,27]

Nucleon N

- Results for nucleon with momentum |p| = 0 and |p| = 1
- Simulations were made for 6 operators (3 for |p| = 0 and 3 for |p| = 1),4 of them were used in analysis
- It is difficult to successfully determine where plateau is

J/ψ meson

- Results for J/ψ meson with momentum |p| = 0and |p| = 1
- Obtained energies agree perfect with expected values:

$$E(|p| = 0) = 1.542$$
 and
 $E(|p| = 1) = 1.579$

Combining single hadron correlators

- Irreps correspond to determined continuum angular momentum J
- Single hadron correlators were calculated separately for all combinations of momentum and polarizations
- Combination of single hadron correlators in correlator corresponding to desired quantum numbers in each irrep

All explicit expressions for $H_1(p)H_2(-p)$ operators with desired quantum numbers in desired irrep are given in our paper (S. Prelovsek, U.S., C.B. Lang ; *JHEP* 2017(1), 129.).

Example: Scattering in P_c^+ pentaquark candidate channel: for irrep H^- and $J = \frac{3}{2}$, $S = \frac{3}{2}$, L = 0 and |p| = 0Anihilation operator for this example is:

$$O_{J=\frac{3}{2},S=\frac{3}{2},L=0}^{H^{-},r=1}(0) = N_{\frac{1}{2}}(0) \left(V_{x}(0) - iV_{y}(0) \right)$$

Creation operator:

$$\bar{O}_{J=\frac{3}{2},S=\frac{3}{2},L=0}^{H^{-},r=1}(0) = N_{\frac{1}{2}}(0) \left(V_{x}(0) + iV_{y}(0) \right)$$

Therefore correlation function for this quantum numbers in H^- irrep is sum over product of single hadron correlators:

$$C_{J=\frac{3}{2},S=\frac{3}{2},L=0}^{VN;H^{-}}(|p|=0) = \langle \Omega | O_{J=\frac{3}{2},S=\frac{3}{2},L=0}^{H^{-}} \bar{O}_{J=\frac{3}{2},S=\frac{3}{2},L=0}^{H^{-}} | \Omega \rangle = C_{\frac{1}{2}\to\frac{1}{2}}^{N} C_{X\to x}^{V} - iC_{\frac{1}{2}\to\frac{1}{2}}^{N} C_{X\to y}^{V} + iC_{\frac{1}{2}\to\frac{1}{2}}^{N} C_{Y\to x}^{V} + C_{\frac{1}{2}\to\frac{1}{2}}^{N} C_{Y\to y}^{V}$$

where:

$$C_{\textit{pol}_{\textit{src}} \rightarrow \textit{pol}_{\textit{snk}}}^{\textit{H}} = \langle \Omega | H_{\textit{pol}_{\textit{snk}}} \bar{H}_{\textit{pol}_{\textit{src}}} | \Omega \rangle$$

Results for irrep *H* with parity P = -1 and quantum numbers $J = \frac{3}{2}, S = \frac{3}{2}, L = 0$

- We are looking for energy shift
- This would be sign that we have some interaction
- No signs for interaction can be seen for given statistics

First results for scattering

- 6 operators per channel (operators for |p| = 1) or 12 for channels in *s* wave (6 for |p| = 0 and 6 for |p| = 1) were used in simulations
- 4 (8) operators were used in analysis
- Observed system has enough energy, that lower pentaquark state could be seen
- Current results are calculated on $\approx \frac{1}{2}$ of our configurations
- Candidate channels for P_c^+ channels have J^P : $\frac{3}{2}^-$, $\frac{3}{2}^+$, $\frac{5}{2}^-$, $\frac{3}{2}^+$

P_c^+ candidate channels: $J^P = \frac{3}{2}^-$

$${\cal P}_c^+$$
 candidate channels: $J^{\cal P}=rac{3}{2}^+$

 P_c^+ candidate channels: $J^P = \frac{5}{2}^+$

 P_c^+ candidate channels: $J^P = \frac{5}{2}^-$

Channels which are not candidates for P_c^+ Channels with positiveChannels with negativeparity:parity:

Within errors fitted energies of these channels are same as non-interacting energy of scattering of $J/\psi - N$ with momentum |p| = 1

Conclusion

- First preliminary results of one channel approximation for P_c^+ channels were presented.
- On given statistics and in our approximation there is no sign of energy shift, which would indicate to P_c^+ state
- P_c^+ could be a result of other neglected effects (coupled channels effect,...)
- Our future plan for this research could be:
 - Rise statistics (on all configurations of our lattice) (already in progress)
 - Add operators and results for $|p| = \sqrt{2}$ (a lot of CPU time needed)
 - Look at other channels which may form P_c^+ state $\chi_{c0} + p$ (quite easy)
 - Look at coupled channel effects (very very challenging)

References

LHCb collaboration

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Decays Phys. Rev. Lett., 2015(115),072001.

Lang, Mohler, Prelovsek, Vidmar

Phys. Rev. D 84, (2011),054503.

Mohler, D. and Prelovsek, S. and Woloshyn, R. M

 $D\pi$ scattering and D meson resonances from lattice QCD *Phys. Rev. D*, 2013(87),034501.

Verduci, V.

Pion-Nucleon Scattering in Lattice QCD Institut für Physics der Karl-Franzens-Universität Graz, September 2014.

Prelovsek, S. and Skerbis, U. and Lang, C. B.(2017) Lattice operators for scattering of particles with spin

Journal of High Energy Physics 2017(1), 129.

J ^P	L	$m_m + m_b$ [MeV]	meson	m _{meson} [MeV]	$J_{\rm meson}^{PC}$	barion	m _{barion} [MeV]	$J^P_{ m barion}$
$\frac{3}{2}^{-}$	2+	3921	$\eta_c(1s)$	2983.4	0^+	р	938,3	$\frac{1}{2}^{+}$
	0+	4034	$J \diagup \psi$	3096.900	1	р	938,3	$\frac{1}{2}^{+}$
	0+	4293	$D^{*0}(\bar{2}007)$	2006.85	1-	Λ_c^+	2286.46	$\frac{1}{2}^{+}$
	0+	4387	D^{-}	1869.59	0-	$\Sigma_{c}^{++}(2520)$	2518.41	$\frac{3}{2}$ +
	1-	4352	χ_{c0}	3414.75	0++	р	938,3	$\frac{\overline{1}}{2}^+$
	1-	4448	χ_{c1}	3510.66	1^{++}	р	938,3	$\frac{\overline{1}}{2}^+$
$\frac{3}{2}^{+}$	1-	3921	$\eta_c(1s)$	2983.4	0^+	р	938,3	$\frac{1}{2}^{+}$
	1-	4034	$J \diagup \psi$	3096.900	1	р	938,3	$\frac{1}{2}^{+}$
	1-	4151	$\bar{D^0}$	1864.83	0-	Λ_c^+	2286.46	$\frac{\overline{1}}{2}^+$
	1-	4293	$D^{*0}(\bar{2}007)$	2006.85	1-	Λ_c^+	2286.46	$\frac{\overline{1}}{2}^+$
	1-	4324	D^{-}	1869.59	0-	$\Sigma_{c}^{++}(2455)$	2453.97	$\frac{\overline{1}}{2}^+$
	1-	4387	D^{-}	1869.59	0-	$\Sigma_{c}^{++}(2520)$	2518.41	$\frac{3}{2}^{+}$
	0+	4448	χ_{c1}	3510.66	1^{++}	р	938,3	$\frac{\overline{1}}{2}^+$
$\frac{5}{2}^{-}$	2+	3921	$\eta_c(1s)$	2983.4	0^+	р	938,3	$\frac{1}{2}^{+}$
	2+	4034	$J \diagup \psi$	3096.900	1	р	938,3	$\frac{1}{2}^{+}$
	1-	4448	χ_{c1}	3510.66	1^{++}	р	938,3	$\frac{\overline{1}}{2}^+$
$\frac{5}{2}^{+}$	3-	3921	$\eta_c(1s)$	2983.4	0^+	р	938,3	$\frac{1}{2}^{+}$
	1-	4034	$J \diagup \psi$	3096.900	$1^{}$	р	938,3	$\frac{\overline{1}}{2}^+$
	1-	4293	$D^{*0}(\bar{2}007)$	2006.85	1-	Λ_c^+	2286.46	$\frac{\overline{1}}{2}^+$
	1-	4387	D ⁻	1869.59	0-	$\Sigma_{c}^{++}(2520)$	2518.41	$\frac{3}{242}$ + 22