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Machine-learning: 

Supervised: 

Supervised ML
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learning a complex non-linear function that maps a high-
dimensional input to an output. 
User provides input and output.

algorithms used to perform specific tasks without explicit 
instructions, relying on inference instead.

Wikipedia-style overview

Input data where 
‘truth-labels’ are 
known

Fix truth labels 
on output layer

Hidden layer learns the 
mapping

back-propagation



Most popular testing ground for ML tools in high-energy physics.  
 
The task:  to classify QCD jets from top-jets. 

QCD jet:

Supervised top-tagging
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Most popular testing ground for ML tools in high-energy physics.  
 
The task:  to classify QCD jets from top-jets. 

Top jet:

Supervised top-tagging
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Traditional approach:  study substructure in kinematics of final state particles
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Machine-learning approach:  input low-level kinematical data into a neural-network 

 
 
Training:
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Data obtained 
from simulation

Truth labels, 
QCD or top?

Supervised top-tagging

The hidden layer then learns the mapping, and given new unseen data 
can predict whether it came from a QCD and top jet.

back-propagation



Machine-learning approach:  input low-level kinematical data into a neural-network 

 
 
Training: The hidden layer then learns the mapping, and given new unseen data 

can predict whether it came from a QCD and top jet.
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Machine-learning approach:  input low-level kinematical data into a neural-network 

 
 
Training: The hidden layer then learns the mapping, and given new unseen data 

can predict whether it came from a QCD and top jet.
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Machine-learning approach:  input low-level kinematical data into a neural-network 

 
 
Training: The hidden layer then learns the mapping, and given new unseen data 

can predict whether it came from a QCD and top jet.
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Scanning over ‘x’, and measuring the percentage of top-jets tagged, and the 
percentage of QCD-jets mis-tagged, gives us the Receiver Operating Characteristic 
(ROC) curve.
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Supervised top-tagging

`Machine-learning landscape 
of top-taggers’ 
Kasieczka, Plehn et al 
SciPost Phys. 7, 014 (2019)



Other applications
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There are many other applications studied as well: 

Quark/gluon tagging 
 
Recursive NNs for jets 
 
Pile-up mitigation 
 
Constraining EFTs with ML

Kasieczka, Kiefer, Plehn, Thompson: SciPost Phys. 6, 069

Komiske, Metodiev, Nachman, Schwartz: JHEP 12 (2017) 051

Brehmer, Cranmer, Louppe, Pavez: Phys. Rev. D 98, 052004

Louppe, Cho, Becot, Cranmer:  arXiv:1702.00748



Searching for new physics
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ML taggers could be very important for NP searches.  
Eg: could significantly improve searches for NP decaying to boosted top-jets.  
 
 
However supervised algorithms suffer some serious drawbacks:  
 
 - they rely on accurate modelling of the event in simulations  
 
 - it is very difficult to know ‘what the machine has learned’  
 
 - they require a-priori knowledge of the what the signal is  
 
 - for every signal a new algorithm needs to be designed  
 
 
All of these can be addressed using an unsupervised machine learning approach.



A new approach for  
new physics
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Unsupervised ML
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Unsupervised learning: 
 
 
Simplest example:  clustering algorithms.

Wikipedia-style overview

an algorithm that helps find previously unknown patterns in a 
data set without pre-existing labels.

DBSCAN
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Unsupervised learning: 
 
 
Simplest example:  clustering algorithms.

Wikipedia-style overview

an algorithm that helps find previously unknown patterns in a 
data set without pre-existing labels.

DBSCAN



The outline
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1. Construct a statistical model to parameterise physical processes in the events 

2. Use inference algorithms to infer the parameters of the model from the data 

3. Use the results of the inference to classify events

• identify events as signal or background without any prior knowledge on the how 
the events look 

• do so in samples with small S/B.

The goals: 
 
 
 
 
 
 
 
The steps:
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Consider an event, represented by a list of measurements made on the event:  
 
 

Suppose events can be generated either by signal or background processes, the 
model can be written as: 

ej = {f1, f2, . . . , fn}

P (ej |!, t) =
X

z=b,s

!z

nfY

i=1

P (fi|tz)

Latent probability 
distributions
Parameterise 
processes within signal 
and background events

Latent parameters
Parameterise the S/B

It can help to think 
of the probability as 
a ‘generative’ 
model



Building a model
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Consider an event, represented by a list of measurements made on the event:  
 
 

Now suppose events can be generated by a mixture of signal and background 
processes; this is the Latent Dirichlet Allocation (LDA) model:

ej = {f1, f2, . . . , fn}

P (ej |↵, t) =
Z

d! ⇡(!z|~↵)
nfY

i=1

X

z=b,s

!zP (fi|tz)

Latent parameters

Prior on the relevance 
of signal and 
background processes 
within the event.

Latent probability 
distributions
Parameterise 
processes within signal 
and background events



LDA as a generative model
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Inference
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Given the model, and the data: 

The latent distributions need to be extracted. 
This is done through variational inference, a technique used to estimate the latent 
distributions that maximise the log-likelihood: 

 
 
 
The success relies on co-occurrences of observables within the jet. 
Observables which co-occur often, will have larger weights in the same latent 
distributions. 

 

D = {e1, e2, . . . , ene}

log
neY

j=1

P (ej) =
neX

j=1

logP (ej)

The prior on the proportions of signal and background processes is incredibly 
important for focusing the inference algorithm towards the extraction of rare 

processes.  (more information in additional slides)



Classification
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Once we have extracted                                    we need to use these for 
classification.  There are two methods:

P (fi|tb) & P (fi|ts)

1. Inference using the model 
 
 
 
i.e. using the proportions of processes inferred in the event. 

2. Likelihood-ratio

L(ej) = L(f1, . . . , fnf ) =

Qnf

i=1 P (fi|ts)Qnf

i=1 P (fi|tb)

!̂(ej) = argmax
!

(P (ej |!, t))

 
We can classify and construct ROC curves using these test-statistics.
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Modelling jets with LDA
Uncovering latent jet substructure
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The only thing to decide upon is the representation of the observables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The jets and latent distributions are defined over this space.

feature1 =


mchild,

mparent1

mchild
,
mparent2

mparent1
,�Rparents

�

feature2

. . .

jet = {feature1, feature2, feature3, . . .}

cl
us

te
rin

g

de-clustering
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Proof-of-principle test:  unsupervised classification of ttbar events.  
 
The challenge:  

 
The latent distributions: 

given a mixed, unlabelled sample of QCD and ttbar di-jet events, 
extract the signal and background latent distributions without any 
prior knowledge of what the signal is. 

Subjet masses and 
mass drops in exactly 

the right places for 
the top jet signal! 

Some sculpting in the 
distributions…

Uncovering latent jet substructure

Unsupervised top-tagging
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Proof-of-principle test:  unsupervised classification of ttbar events.  
 
The challenge:  

 
The classification power: 

given a mixed, unlabelled sample of QCD and ttbar di-jet events, 
extract the signal and background latent distributions without any 
prior knowledge of what the signal is. 

Performance equalling 
that of the HEP top-
tagger, shown in the 

purple star.

Uncovering latent jet substructure
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There are well-known new physics signatures that aren’t covered by traditional 
searches, such as the jets with a di-boson substructure. 

For example: W 0 ! W� ! WWW ! jets
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subjet masses and 
mass drops in exactly 

the right places for 
the W’ signal!
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The challenge: 

The set-up: 

The latent distributions: 

these signals are rare, so we must be able to extract the signal 
from samples with very small S/B

we take a sample with 50,000 di-jet events, and S/B = 0.01 and 
0.0058.

Uncovering latent jet substructure



Results here 
compared to those 

from CWoLa

New physics extraction
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The challenge: 

The set-up: 

The classification power: 

these signals are rare, so we must be able to extract the signal 
from samples with very small S/B

we take a sample with 50,000 di-jet events, and S/B = 0.01 and 
0.0058.

Uncovering latent jet substructure



Concluding remarks

Barry M. DillonJozef Stefan Institute, Ljubljana
!34

• The mixed-membership (LDA) model proves very successful in extracting rare 
signals from large datasets (at least for di-jet events). 

• The signal needs to contain a substructure complex enough to provide the co-
occurrences required for variational inference to work.

Uncovering latent jet substructure

Next steps:

1. Construct statistical models to describe whole events:  
jets, isolated photons & leptons, missing energy, pile-up, … 

2. Develop inference tools to extract latent parameters for these models. 

3. Apply these methods on datasets from the CMS Open Data project.
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• The prior on signal and background proportions is a Dirichlet distribution, and is conjugate to 
the binomial distribution 
 

• The alpha parameters control the distribution of the signal and background features 
throughout the events

The Dirichlet distribution
Additional slides: the Dirichlet prior
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K=2 ) ~↵=[↵0,↵1]

⇢ = ↵1/↵0

⌃ = ↵0 + ↵1

controls the ratio of signal to background features in the whole sample

controls the distribution of signal and background features in each event

& Dir(✓|↵0,↵1) =
�(↵0 + ↵1)

�(↵0)�(↵1)
✓↵0�1(1� ✓)↵1�1

Z 1

0
d✓ Dir (✓|↵0,↵1) (✓pS(fi) + (1� ✓)pB(fi)) =

pS(fi) + ⇢ pB(fi)

1 + ⇢

⌃ ⌧ 1

⌃ � 1

events mostly composed of a single process

events composed of a large mixture of processes
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Finding the best model
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• We need to find the ‘best’ model, without knowing what the signal or S/B is 
 
by ‘best’ I mean best choice of hyper-parameters 
 
 
 

• A model is good when the perplexity is minimised


• If the resulting model does not provide good classification on test samples 
                            

perplexity = e� log P (events|⌃,⇢)
N

 - LDA does not work well for our physical scenario 
 - our representation of the data is not optimal 
 - the signal is just difficult to extract

!37

Additional slides: the Dirichlet prior
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• We scan over the hyper-parameters:

global minimum 
at vanishing rho, 
but this is a trivial 

solution.

lots of local minima, 
close to models with best 

AUC and best rejection 
rate at fixed mis-tag.
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Additional slides: the Dirichlet prior

Finding the best model
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Preliminary results

High-performance regions match those of (local) minimum perplexity.
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Additional slides: the Dirichlet prior

Finding the best model


