## $(g-2)_{\mu}$ and scalar leptoquark(s)

### **Olcyr Sumensari**

hep-ph/1910.03877

In collaboration with

I. Doršner and S. Fajfer

Belica, October 10, 2019.





Università degli Studi di Padova

## **Introduction**

$$(g-2)_{\mu}$$

Long-standing discrepancy [ $\approx 3.6 \sigma$ ] in  $(g-2)_{\mu}$ :

$$a_{\mu}^{\text{exp}} = 116592089(63) \times 10^{-11}$$
$$a_{\mu}^{\text{SM}} = 116591820(36) \times 10^{-11}$$



[Brookhaven, 2006] [Keshavarzi et al., '18], [Davier et al. '19]

- $\Rightarrow$  Signal of new bosons coupled to muons?
- $\Rightarrow$  New results by Muon g-2 at Fermilab will be soon released!

This talk: (i) Brief overview

(ii) Single-leptoquark solutions

(iii) Leptoquark mixing for  $(g-2)_{\mu}$ 

## Brief overview

### Introduction: The anomalous magnetic moment

• Dirac equation predicts for a lepton  $\ell = e, \mu, \tau$ :

$$ec{\mu_\ell} = g_\ell \, rac{e}{2m_\ell} \, ec{s} \,, \qquad \qquad g_\ell = 2$$

### Introduction: The anomalous magnetic moment

• Dirac equation predicts for a lepton  $\ell = e, \mu, \tau$ :

$$ec{\mu}_\ell = g_\ell \, rac{e}{2m_\ell} \, ec{s} \,, \qquad \qquad g_\ell = 2$$

• Quantum corrections induce deviations:

$$g_{\ell} = 2\left(1 + a_{\ell}\right) \neq 2$$

### Introduction: The anomalous magnetic moment

• Dirac equation predicts for a lepton  $\ell = e, \mu, \tau$ :

$$ec{\mu_\ell} = g_\ell \, rac{e}{2m_\ell} \, ec{s} \, , \qquad \qquad g_\ell = 2$$

• Quantum corrections induce deviations:

$$g_{\ell} = 2\left(1 + \mathbf{a}_{\ell}\right) \neq 2$$



• Study the lepton-photon vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p')\Big[\gamma_{\mu}\mathcal{F}_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{\ell}}\mathcal{F}_{2}(q^{2}) + \dots\Big]u(p)$$
$$\mathcal{F}_{1}(0) = 1 \qquad \mathcal{F}_{2}(0) = a_{\ell} \propto \frac{\alpha_{\rm em}}{\pi} + \dots \approx 10^{-3}\Big)$$

 $\Rightarrow$  Pure quantum effect! Very sensitive probe of new physics

### Standard Model Components of muon g-2



[J. Price slides at UK HEP forum]

## History plot:



 $\Rightarrow$  BNL delivered 0.5ppm precision.

### Current status



[Davier, Hoecker, Malaescu, Zhang.'19]

 $\Rightarrow$  Fermilab aims to reduce the exp. error by  $\approx \times 4$ .

 $\Rightarrow$  Effort to reduce the theory error, cf. "Muon (g-2) Th. Initiative".

Fermilab data collected compared to BNL:



[D. Hertzog talk at "Muon g - 2 Th. Initiative Workshop", '19]

#### $\Rightarrow$ News coming very soon!

# $(g-2)_{\mu}$ and new physics: Leptoquarks

## $(g-2)_{\mu}$ and new physics

 $m_\ell$ 

 $\ell_L$ 

 $\ell_R$ 

W, Z

 $\ell_L$ 

• Current discrepancy is of similar size of SM electroweak loops:





[Giudice et al. '12]

## $(g-2)_{\mu}$ and new physics

me

 $\ell_L$ 

 $\ell_R$ 

• Current discrepancy is of similar size of SM electroweak loops:

 $\ell_L$ 





[Giudice et al. '12]

 $\Rightarrow$  Either new physics is light, **and/or** an enhacement mechanism takes place (breaking the naive scaling).

## $(g-2)_{\mu}$ and new physics

• Current discrepancy is of similar size of SM electroweak loops:





[Giudice et al. '12]

 $\Rightarrow$  Either new physics is light, **and/or** an enhacement mechanism takes place (breaking the naive scaling).

• Popular solution: light (pseudo)scalar particles

 $\ell_L$ 





see also [Bauer et al. '19], [Cornella, Paradisi, OS. In preparation]

 $\ell_R$ 

 $\ell_I$ 

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM}$$
$$= (2.7 \pm 0.7) \times 10^{-9}$$

$$\mathcal{L} \supset rac{c_{\mathrm{dip}}}{\Lambda^2} \overline{L} \sigma_{\mu
u} \ell_R H F^{\mu
u} + \mathrm{h.c.}$$

•  $\Delta a_{\mu}$  can be explained if  $\Delta a_{\mu} \propto \frac{m_{\mu} m_{t}}{\Lambda^{2}}$ 



 $\Rightarrow$  LQs should couple to  $\overline{\mu_L} t_R S$  and  $\overline{\mu_R} t_L S$ .

•  $\Delta a_{\mu}$  can be explained if  $\Delta a_{\mu} \propto \frac{m_{\mu} m_{t}}{\Lambda^{2}}$ 



 $\Rightarrow$  LQs should couple to  $\overline{\mu_L} t_R S$  and  $\overline{\mu_R} t_L S$ .

 $\Rightarrow$  Perturbativity implies that  $m_{\rm LQ} \lesssim 30$  TeV.

•  $\Delta a_{\mu}$  can be explained if  $\Delta a_{\mu} \propto \frac{m_{\mu} m_{t}}{\Lambda^{2}}$ 



 $\Rightarrow$  LQs should couple to  $\overline{\mu_L} t_R S$  and  $\overline{\mu_R} t_L S$ .

 $\Rightarrow$  Perturbativity implies that  $m_{\rm LQ} \lesssim 30$  TeV.

 $\Rightarrow$  Only two models are viable:  $S_1 = (\overline{\mathbf{3}}, \mathbf{1}, 1/3)$  and  $R_2 = (\mathbf{3}, \mathbf{2}, 7/6)$ . [Cheung. '01]

| Symbol            | $(SU(3)_c, SU(2)_L, U(1)_Y)$   | Interactions                                      | F = 3B + L |
|-------------------|--------------------------------|---------------------------------------------------|------------|
| $S_3$             | $(\overline{3}, 3, 1/3)$       | $\overline{Q}^{C}L$                               | -2         |
| $R_2$             | $({\bf 3},{f 2},7/6)$          | $\overline{u}_R L$ , $\overline{Q} e_R$           | 0          |
| $\widetilde{R}_2$ | (3, 2, 1/6)                    | $\overline{d}_R L$                                | 0          |
| $\widetilde{S}_1$ | $({f \overline{3}},{f 1},4/3)$ | $\overline{d}_R^C e_R$                            | -2         |
| $S_1$             | $(\overline{3},1,1/3)$         | $\overline{Q}^{C}L$ , $\overline{u}_{R}^{C}e_{R}$ | -2         |

- Are there other potentially large contributions in LQ models?
- What if more than one scalar LQ exist?

# Leptoquark mixing for $(g-2)_{\mu}$

[Dorsner, Fajfer, **OS**. 1910.03877].

### Why two scalar LQs?

- $\Rightarrow$  Having more than one LQ is motivated by theory/phenomenology:
  - SU(5) unification possible with two light scalar LQs.
  - Models for radiative neutrino masses.

- cf. e.g. [Dorsner et. al. '18]
- [Mahanta, '99], [Chua et al. '99]
- *B*-physics anomalies require more than one (scalar) LQ.

[Angelescu, Becirevic, Faroughy, OS. '18]

### Why two scalar LQs?

 $\Rightarrow$  Having more than one LQ is motivated by theory/phenomenology:

- SU(5) unification possible with two light scalar LQs.
- Models for radiative neutrino masses.

 $\mathcal{L} \supset \xi HHSS'$  or q HSS'

cf. e.g. [Dorsner et. al. '18]

[Mahanta, '99], [Chua et al. '99]

• *B*-physics anomalies require more than one (scalar) LQ.

[Angelescu, Becirevic, Faroughy, OS. '18]

### Leptoquark mixing

 $\Rightarrow Scalar LQs can mix with the SM Higgs (cf. [Hirsch. '06]), inducing new contributions to dipoles! [Dorsner, Fajfer, OS. 1910.03877].$ 



 $\Rightarrow$  Chirality enhancement induced by mixing of chiral LQs!

### Viable scenarios

[Dorsner, Fajfer, **OS**. 1910.03877].

| LQ pairs                | Mixing field(s) | $(g-2)_{\mu}$    | u-mass |
|-------------------------|-----------------|------------------|--------|
| $S_1 - S_3$             | H H             | $\boldsymbol{u}$ | -      |
| $\widetilde{S}_1 - S_3$ | H H             | d                | -      |
| $\widetilde{R}_2 - R_2$ | H H             | d                | -      |
| $\tilde{R}_2 - S_1$     | H               | -                | d      |
| $\tilde{R}_2 - S_3$     | Н               | -                | d      |

• Two new possibilities with non-chiral LQs – but stemming from different couplings:  $R_2 - \widetilde{R}_2$  and  $S_1 - S_3$ .

• One entirely new scenario:  $\widetilde{S}_1$ - $S_3$ .

### Viable scenarios

| LQ pairs                | Mixing field(s) | $(g-2)_{\mu}$ | u-mass |
|-------------------------|-----------------|---------------|--------|
| $S_1 - S_3$             | H H             | u             | -      |
| $\widetilde{S}_1 - S_3$ | H H             | d             | -      |
| $\widetilde{R}_2 - R_2$ | H H             | d             | -      |
| $\tilde{R}_2 - S_1$     | H               | -             | d      |
| $\tilde{R}_2 - S_3$     | Н               | _             | d      |

• Two new possibilities with non-chiral LQs – but stemming from different couplings:  $R_2 - \tilde{R}_2$  and  $S_1 - S_3$ .

• One entirely new scenario:  $\widetilde{S}_1$ - $S_3$ .

<u>Remainder of this talk</u>: (i) How does it work?  $S_1$ - $S_3$  via top loops (iii) Mixing scenarios with *b*-quark loops

## Example: $S_1$ - $S_3$ via top loops

LQ mixing

• Take two scalars  $S_a^{(Q)}$  and  $S_b^{(Q)}$ , from different EW multiplets, with same electric charge Q, and mass matrix:

$$\mathcal{M}^2 = egin{pmatrix} m_{S_a}^2 & \Omega \ \Omega & m_{S_b}^2 \end{pmatrix}$$

where  $\Omega$  is the mixing term and  $m_{S_{a,b}}$  are the masses prior to mixing.

LQ mixing

• Take two scalars  $S_a^{(Q)}$  and  $S_b^{(Q)}$ , from different EW multiplets, with same electric charge Q, and mass matrix:

$$\mathcal{M}^2 = egin{pmatrix} m_{S_a}^2 & \Omega \ \Omega & m_{S_b}^2 \end{pmatrix}$$

where  $\Omega$  is the mixing term and  $m_{S_{a,b}}$  are the masses prior to mixing.

• New mass eigenstates with charge Q are:

$$\begin{pmatrix} S_{+}^{(Q)} \\ S_{-}^{(Q)} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} S_{a}^{(Q)} \\ S_{b}^{(Q)} \end{pmatrix}, \qquad \tan 2\theta = \frac{2\Omega}{m_{S_{a}}^{2} - m_{S_{b}}^{2}}$$

with

$$m_{S_{\pm}^{(Q)}}^2 = \frac{m_{S_a}^2 + m_{S_b}^2}{2} \pm \frac{1}{2} \sqrt{(m_{S_a}^2 - m_{S_b})^2 + 4\Omega^2} \,,$$

LQ mixing

• Take two scalars  $S_a^{(Q)}$  and  $S_b^{(Q)}$ , from different EW multiplets, with same electric charge Q, and mass matrix:

$$\mathcal{M}^2 = egin{pmatrix} m_{S_a}^2 & \Omega \ \Omega & m_{S_b}^2 \end{pmatrix}$$

where  $\Omega$  is the mixing term and  $m_{S_{a,b}}$  are the masses prior to mixing.

• New mass eigenstates with charge Q are:

$$\begin{pmatrix} S_{+}^{(Q)} \\ S_{-}^{(Q)} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} S_{a}^{(Q)} \\ S_{b}^{(Q)} \end{pmatrix}, \qquad \tan 2\theta = \frac{2\Omega}{m_{S_{a}}^{2} - m_{S_{b}}^{2}}$$

with

$$m_{S_{\pm}^{(Q)}}^2 = rac{m_{S_a}^2 + m_{S_b}^2}{2} \pm rac{1}{2} \sqrt{(m_{S_a}^2 - m_{S_b})^2 + 4\Omega^2} \,,$$

• Maximal mixing ( $\theta = \pi/4$ ) can arise for  $m_S \equiv m_{S_a} = m_{S_b}$ :

$$\delta m_S^{(Q)} \equiv m_{S_+}^{(Q)} - m_S \simeq m_S - m_{S_-}^{(Q)}$$
  $(m_{S_{a,b}} \gg \Omega)$ 

$$(g-2)_{\mu}$$

$$\begin{split} \mathcal{L}_{S_1} &= y_R^{ij} \, \overline{u_{Ri}^C} e_{Rj} \, S_1 + \text{h.c.} \,, \\ \mathcal{L}_{S_3} &= y_L^{ij} \, \overline{Q_i^C} i \tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.} \,, \end{split}$$

$$\begin{split} \mathcal{L}_{S_1} &= y_R^{ij} \, \overline{u_{Ri}^C} e_{Rj} \, S_1 + \text{h.c.} \,, \\ \mathcal{L}_{S_3} &= y_L^{ij} \, \overline{Q_i^C} i \tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.} \,, \end{split}$$

These states can mix via the SM Higgs:

$$\mathcal{L}_{\text{mix}} \supset \boldsymbol{\xi} H^{\dagger}(\vec{\tau} \cdot \vec{S_3}) HS_1^* + \text{h.c.} \qquad \Longrightarrow \qquad \mathcal{M}_{S^{(1/3)}}^2 = \begin{pmatrix} m_{S_3}^2 & -\frac{\boldsymbol{\xi} v^2}{2} \\ -\frac{\boldsymbol{\xi} v^2}{2} & m_{S_1}^2 \end{pmatrix}$$

Mass eigenstates:

$$\begin{pmatrix} S_{+}^{(1/3)} \\ S_{-}^{(1/3)} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} S_{3}^{(1/3)} \\ S_{1}^{(1/3)} \end{pmatrix}$$

 $\Rightarrow$  Both mass-eigenstates have couplings with  $\overline{u_L^C} e_L$  and  $\overline{u_R^C} e_R$ .

.

 $(g-2)_{\mu}$ 

Example: 
$$S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3) \& S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$$
  $(g-2)_{\mu}$ 

Yukawa choice:

$$\begin{split} \mathcal{L}_{S_1} &= y_R^{ij} \, \overline{u_{Ri}^C} e_{Rj} \, S_1 + \text{h.c.} \,, \\ \mathcal{L}_{S_3} &= y_L^{ij} \, \overline{Q_i^C} i \tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.} \,, \end{split}$$

with  $y_{t\mu}^L \neq 0$  and  $y_{t\mu}^R \neq 0$ .



<u>Four mass-eigenstates</u>:  $m_S \equiv m_{S_3}^{(4/3)} = m_{S_3}^{(2/3)}$  and  $m_{S_{\pm}} \equiv m_{S_{\pm}}^{(1/3)}$ .

 $(g-2)_{\mu}$ 

• Chirality-enhanced contribution:



with  $x_t^{\pm} = m_t^2 / m_{S_{\pm}}^2$ .

• For maximal mixing  $(\theta = \pi/4)$ , this contribution reads

$$\delta a_\mu \propto rac{m_\mu m_t}{m_S^2} rac{\delta m_S}{m_S} y^{b\mu}_R y^{t\mu}_L$$

 $\Rightarrow$  <u>Crucial</u>: How do we fix  $\delta m_S$ ?

*T*-parameter:

$$\Delta T = -\frac{N_c}{4\pi c_w^2 s_w^2} \frac{1}{m_Z^2} \left[ \cos^2 \theta F(m_{S_3}, m_{S_-}) + \sin^2 \theta F(m_{S_3}, m_{S_+}) \right],$$

with F(m, m) = 0.





EWPT

$$\Delta T = -\frac{N_c}{4\pi c_w^2 s_w^2} \frac{1}{m_Z^2} \left[ \cos^2 \theta F(m_{S_3}, m_{S_-}) + \sin^2 \theta F(m_{S_3}, m_{S_+}) \right],$$

with F(m, m) = 0.



Expanding on  $\delta m_S$  for maximal mixing ( $\theta = \pi/4$ ):

$$\Delta T = \frac{N_c}{3\pi c_w^2 s_w^2} \frac{\delta m_S^2}{m_Z^2} + \dots$$

$$\Delta T^{\exp} = 0.05(12) \quad \Rightarrow \quad |\delta m_S| \lesssim 40 \text{ GeV}$$

[Gfitter. '12]

EWPT

### Yukawas and flavor

#### $Z \to \ell \ell$ and $Z \to \nu \bar{\nu}$

LQs modify the Z-couplings to leptons at one-loop:

$$\left[\delta \mathcal{L}_{\text{eff}}^{Z} = \frac{g}{\cos \theta_{W}} \sum_{i,j} \bar{\ell}_{i} \gamma^{\mu} \left[ g_{\ell_{L}}^{ij} P_{L} + g_{\ell_{R}}^{ij} P_{R} \right] \ell_{j} Z_{\mu} \right]$$

$$g_{\ell_{L(R)}}^{ij} = \delta_{ij} \ g_{\ell_{L(R)}}^{SM} + \delta g_{\ell_{L(R)}}^{ij}$$



⇒ Complete one-loop computation: [Arnan, Becirevic, Mescia, OS. '19]

### Yukawas and flavor

#### $Z \to \ell \ell$ and $Z \to \nu \bar{\nu}$



 $\Rightarrow$  To compare with leading-log approximation (LLA). cf. [Feruglio et al. '16]

 $\Rightarrow \mathcal{O}(20\%) \text{ corrections due to external momenta} (\propto x_Z \log x_t) \text{ not}$ considered before. cf. e.g. [Neubert et al. '15], [Buttazo et al. '17] + many more

### LHC constraints

• LQ pair-production via QCD:



• Di-lepton tails at high-pT:



[Angelescu, Becirevic, Faroughy, OS. '18] [see also Faroughy et al. '15]  $U_1 = (3, 1, 2/3)$ 

[CMS-PAS-EXO-17-003]

$$m_S\gtrsim 1.6\,\,{
m TeV}$$

[conservative choice;  $q\mu$  final state]

[ATLAS. 1707.02424,1709.07242]



Olcyr Sumensari (INFN and Univ. Padova)

### Combining everything





Benchmark:

- Maximal mixing  $(\theta = \pi/4)$ .
- $\delta m_S = 40$  GeV (EWPT).



 $\Rightarrow$  Yukawa perturbativity ( $\lesssim \sqrt{4\pi}$ )  $\Rightarrow m_S \lesssim 15$  TeV.

### Maximal mixing or not?

 $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3) \& S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$ 



 $\Rightarrow$  It does not change much...

# Other possibilities: *b*-quark loops

### **Reminder:**

| Symbol            | $(SU(3)_c, SU(2)_L, U(1)_Y)$ | Interactions                                      | F = 3B + L |
|-------------------|------------------------------|---------------------------------------------------|------------|
| $S_3$             | $(\overline{3}, 3, 1/3)$     | $\overline{Q}^{C}L$                               | -2         |
| $R_2$             | $({\bf 3},{f 2},7/6)$        | $\overline{u}_R L$ , $\overline{Q} e_R$           | 0          |
| $\widetilde{R}_2$ | (3, 2, 1/6)                  | $\overline{d}_R L$                                | 0          |
| $\widetilde{S}_1$ | $(\overline{3},1,4/3)$       | $\overline{d}_R^C e_R$                            | -2         |
| $S_1$             | $(\overline{3},1,1/3)$       | $\overline{Q}^{C}L$ , $\overline{u}_{R}^{C}e_{R}$ | -2         |

### Other possibilities - I $R_2 = (\mathbf{3}, \mathbf{2}, 7/6)$

 $R_2 = (\mathbf{3}, \mathbf{2}, 7/6) \& \widetilde{R}_2 = (\mathbf{3}, \mathbf{2}, 1/6)$ 

• Yukawa choice:

$$egin{aligned} \mathcal{L}_{\widetilde{R}_2} &= -y_L^{ij} \, \overline{d}_{Ri} \widetilde{R}_2 i au_2 L_j + ext{h.c.} \,, \\ \mathcal{L}_{R_2} &= y_R^{ij} \, \overline{Q}_i e_{Rj} R_2 + ext{h.c.} \,. \end{aligned}$$

with  $y_{b\mu}^L \neq 0$  and  $y_{b\mu}^R \neq 0$ .

### Other possibilities - I $R_2 = (\mathbf{3}, \mathbf{2}, 7/6) \& \widetilde{R}_2 = (\mathbf{3}, \mathbf{2}, 1/6)$

• Yukawa choice:

$$egin{aligned} \mathcal{L}_{\widetilde{R}_2} &= -y_L^{ij}\,\overline{d}_{Ri}\widetilde{R}_2 i au_2 L_j + \mathrm{h.c.}\,, \\ \mathcal{L}_{R_2} &= y_R^{ij}\,\overline{Q}_i e_{Rj}R_2 + \mathrm{h.c.}\,. \end{aligned}$$

with  $y_{b\mu}^L \neq 0$  and  $y_{b\mu}^R \neq 0$ .

• Mixing with SM Higgs:

see also [Kosnik. '12]

$$\mathcal{L}_{ ext{mix}}^{\widetilde{R}_2 \& R_2} = - \boldsymbol{\xi} \left( R_2^{\dagger} H 
ight) \left( \widetilde{R}_2^T i au_2 H 
ight) + ext{h.c.} \,.$$

- $\Rightarrow$  Mixing of Q = 2/3 components of doublets.
- $\Rightarrow$  EWPT gives  $\delta m_S \lesssim 50$  GeV for maximal mixing.
- $\Rightarrow$  Diquark couplings forbidden by gauge invariance.

Other possibilities - I

 $R_2 = (\mathbf{3}, \mathbf{2}, 7/6) \& \widetilde{R}_2 = (\mathbf{3}, \mathbf{2}, 1/6)$ 



### Other possibilities - II

 $\widetilde{S}_1 = (\bar{\mathbf{3}}, \mathbf{1}, 4/3) \& S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$ 

• Yukawa choice:

$$\begin{split} \mathcal{L}_{\widetilde{S}_1} &= y_R^{ij} \, \bar{d}_{Ri}^C \, e_{Rj} \, \widetilde{S}_1 + \text{h.c.} \,, \\ \mathcal{L}_{S_3} &= y_L^{ij} \, \bar{Q}_i^C \, i\tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.} \,, \end{split}$$

with  $y_{b\mu}^L \neq 0$  and  $y_{b\mu}^R \neq 0$ .

### Other possibilities - II

 $\widetilde{S}_1 = (\bar{\mathbf{3}}, \mathbf{1}, 4/3) \& S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$ 

• Yukawa choice:

$$\begin{split} \mathcal{L}_{\widetilde{S}_1} &= y_R^{ij} \, \bar{d}_{Ri}^C \, e_{Rj} \, \widetilde{S}_1 + \text{h.c.} \,, \\ \mathcal{L}_{S_3} &= y_L^{ij} \, \bar{Q}_i^C \, i\tau_2 (\vec{\tau} \cdot \vec{S}_3) L_j + \text{h.c.} \,, \end{split}$$

with  $y_{b\mu}^L \neq 0$  and  $y_{b\mu}^R \neq 0$ .

• Mixing with SM Higgs:

$$\mathcal{L}_{\mathrm{mix}}^{\widetilde{S}_1 \& S_3} = \boldsymbol{\xi} H^T i \tau_2 (\vec{\tau} \cdot \vec{S}_3) H \widetilde{S}_1^* + \mathrm{h.c.} \,,$$

- $\Rightarrow$  Mixing of Q = 4/3 components of doublets.
- $\Rightarrow$  EWPT gives  $\delta m_S \lesssim 50$  GeV for maximal mixing.
- $\Rightarrow$  Entirely new scenario!

Other possibilities - II

 $\widetilde{S}_1 = (\bar{\mathbf{3}}, \mathbf{1}, 4/3) \& S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$ 



## Summary and perspectives

 $\circ~(g-2)_{\mu}$  remains one of the most precise tests of the SM validity. Clarification from Fermilab coming soon!

 $\circ~$  We summarize the viable single LQ explanations to  $(g-2)_{\mu}.$  Top-quark chirality enhancement  $\Rightarrow~m_S\lesssim30~$  TeV

- We propose the mixing of two scalar LQs as a new mechanism for chirality enhancement and identify three new viable scenarios
   Complementarity between EWPT, LHC and flavor data
- $\circ~$  Building a concrete model to simultaneously explain  $(g-2)_{\mu}$  and the B-physics anomalies remains a very challenging task.

Data-driven model building!

# Thank you!

# Back-up

## Limits on LQ pair-production

[Angelescu, Becirevic, Faroughy, OS. 1808.08179]

| Decays                     | LQs                       | Scalar LQ limits      | Vector LQ limits            | $\mathcal{L}_{int}$ / Ref.      |
|----------------------------|---------------------------|-----------------------|-----------------------------|---------------------------------|
| $jj\tau\bar{\tau}$         | $S_1, R_2, S_3, U_1, U_3$ | _                     | _                           | _                               |
| $b\bar{b}\tau\bar{\tau}$   | $R_2, S_3, U_1, U_3$      | $850~(550)~{\rm GeV}$ | 1550 (1290) ${\rm GeV}$     | $12.9 \text{ fb}^{-1}$ [49]     |
| $t\bar{t}\tau\bar{\tau}$   | $S_1, R_2, S_3, U_3$      | $900~(560)~{\rm GeV}$ | 1440 (1220) ${\rm GeV}$     | $35.9 \text{ fb}^{-1} [50]$     |
| $jj\muar\mu$               | $S_1, R_2, S_3, U_1, U_3$ | 1530 (1275)  GeV      | 2110 (1860)  GeV            | $35.9 \text{ fb}^{-1} [51]$     |
| $bar{b}\muar{\mu}$         | $R_2, U_1, U_3$           | 1400 (1160)  GeV      | $1900 \ (1700) \ {\rm GeV}$ | $36.1 \text{ fb}^{-1} [52]$     |
| $t \bar{t}  \mu \bar{\mu}$ | $S_1, R_2, S_3, U_3$      | $1420 (950) { m GeV}$ | 1780 (1560) ${\rm GeV}$     | $36.1 \text{ fb}^{-1} [53, 54]$ |
| jj uar u                   | $R_2, S_3, U_1, U_3$      | $980~(640)~{\rm GeV}$ | $1790 \ (1500) \ {\rm GeV}$ | $35.9 \text{ fb}^{-1} [55]$     |
| $b\bar{b}  u \bar{ u}$     | $S_1, R_2, S_3, U_3$      | $1100 (800) { m GeV}$ | $1810 (1540) { m GeV}$      | $35.9 \text{ fb}^{-1} [55]$     |
| $t\bar{t}\nu\bar{\nu}$     | $R_2, S_3, U_1, U_3$      | $1020 (820) { m GeV}$ | 1780 (1530) ${\rm GeV}$     | $35.9 \text{ fb}^{-1} [55]$     |

### B-anomalies

| Model                     | $R_{D^{(*)}}$ | $R_{K^{(*)}}$ | $R_{D^{(*)}} \ \& \ R_{K^{(*)}}$ |
|---------------------------|---------------|---------------|----------------------------------|
| $S_1 = (\bar{3}, 1, 1/3)$ | $\checkmark$  | <b>X</b> *    | ×                                |
| $R_2 = (3, 2, 7/6)$       | $\checkmark$  | <b>X</b> *    | ×                                |
| $S_3 = (\bar{3}, 3, 1/3)$ | ×             | $\checkmark$  | ×                                |
| $U_1 = (3, 1, 2/3)$       | $\checkmark$  | $\checkmark$  | $\checkmark$                     |
| $U_3 = (3, 3, 2/3)$       | ×             | $\checkmark$  | ×                                |

[Angelescu, Becirevic, Faroughy, OS. '18]

$$\begin{split} \delta a_{\mu} &= -\frac{N_c \, m_{\mu}^2}{8\pi^2} \Biggl\{ 2 \, |y_L^{b\mu}|^2 \, \frac{\mathcal{F}_{4/3}(x_b)}{m_{S_3}^2} + \left[ \sin^2 \theta \, |y_R^{t\mu}|^2 + \cos^2 \theta \, |y_L^{b\mu}|^2 \right] \frac{\mathcal{F}_{1/3}(x_t^{-1})}{m_{S_-}^2} \\ &+ \left[ \cos^2 \theta \, |y_R^{t\mu}|^2 + \sin^2 \theta \, |y_L^{b\mu}|^2 \right] \frac{\mathcal{F}_{1/3}(x_t^+)}{m_{S_+}^2} \\ &+ \frac{m_t}{m_{\mu}} \sin \theta \cos \theta \, \mathrm{Re} \big( y_L^{b\mu} \, y_R^{t\mu \, *} \big) \Biggl[ \frac{\mathcal{G}_{1/3}(x_t^+)}{m_{S_+}^2} - \frac{\mathcal{G}_{1/3}(x_t^{-1})}{m_{S_-}^2} \Biggr] \Biggr\}, \end{split}$$