Introduction	Leptoquarks	Neutron lifetime	Proton ∣ifetime	Calculations	Conclusion

Scalar leptoquark in nucleon decays

Mitja Šadl with Prof. Dr. Svjetlana Fajfer

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia Jožef Stefan Institute, Ljubljana, Slovenia

Brda, 10. 10. 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

1 Introduction

- 2 Leptoquarks
- 3 Neutron lifetime
- Proton lifetime
- 5 Calculations
- 6 Conclusion

- 3 Neutron lifetime
- 4 Proton lifetime
- 5 Calculations

- 2 Leptoquarks
- 3 Neutron lifetime
- Proton lifetime
- 5 Calculations

- 2 Leptoquarks
- 3 Neutron lifetime
- 4 Proton lifetime
- 5 Calculations

- 2 Leptoquarks
- 3 Neutron lifetime
- Proton lifetime
- 5 Calculations

1 Introduction

- 2 Leptoquarks
- 3 Neutron lifetime
- Proton lifetime
- **5** Calculations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへぐ

Motivation

- electric charge not quantized
- many free parameters
- why 3 fermion famillies?
- neutrino masses?

Grand Unified Theories

- one force
- one coupling constant

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?

Motivation

- electric charge not quantized
- many free parameters
- why 3 fermion famillies?
- neutrino masses?

↓

Grand Unified Theories

- one force
- one coupling constant

・ロト ・聞ト ・ヨト ・ヨト 500 э

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Grand Unified Theories

• quarks and leptons in the same multiplets \Rightarrow electric charge quantized \Rightarrow new interactions between quarks and leptons \Rightarrow barion number violation \Rightarrow proton decay ($\tau_p > 10^{30}$ y) • $m_X \sim 10^{14-16}$ GeV

Leptoquarks

$(SU(3)_{\mathrm{C}}, SU(2)_{\mathrm{L}}, U(1)_{\mathrm{Y}})$	spin	symbol	coupling	coupling	F
(3 , 3, 1/3)		S_3			-2
(3, 2, 7/6)		R_2	RL, LR		0
(3, 2, 1/6)		\tilde{R}_2	$RL, \overline{\mathrm{LR}}$		0
$(\bar{3}, 1, 4/3)$	0	$ ilde{S}_1$	RR	RR	$^{-2}$
$(\bar{3}, 1, 1/3)$		S_1	LL, RR, $\overline{ m RR}$	LL, RR	$^{-2}$
$(\overline{3},1,-2/3)$		\overline{S}_1	$\overline{\mathrm{RR}}$	RR	$^{-2}$
(3, 3, 2/3)		U_3	LL		0
$(\bar{3}, 2, 5/6)$		V_2	RL, LR	LR	$^{-2}$
$(\overline{f 3},{f 2},-1/6)$	1	$ ilde{V}_2$	RL, \overline{LR}	RL	$^{-2}$
(3 , 1, 5/3)	1	\widetilde{U}_1	RR		0
(3 , 1, 2/3)		U_1	LL, RR, $\overline{ ext{RR}}$		0
(3, 1, -1/3)		\overline{U}_1	$\overline{\mathrm{RR}}$		0

Leptoquarks

$(SU(3)_{\mathrm{C}}, SU(2)_{\mathrm{L}}, U(1)_{\mathrm{Y}})$	spin	symbol	coupling (quark and lepton)	coupling (pair of quarks)	F
(3 , 3, 1/3)		S_3			-2
(3, 2, 7/6)		R_2	RL, LR		0
(3, 2, 1/6)	0	\tilde{R}_2	$RL, \overline{\mathrm{LR}}$		0
$(\bar{3}, 1, 4/3)$	U	$ ilde{S}_1$	RR	RR	$^{-2}$
$(\bar{3}, 1, 1/3)$		S_1	LL, RR, $\overline{\mathrm{RR}}$	LL, RR	-2
$(\overline{3},1,-2/3)$		\overline{S}_1	$\overline{\mathrm{RR}}$	RR	-2
(3, 3, 2/3)		U_3	LL		0
$(\overline{3}, 2, 5/6)$		V_2	RL, LR	LR	$^{-2}$
$(\overline{3},2,-1/6)$	1	\tilde{V}_2	RL, \overline{LR}	RL	$^{-2}$
(3 , 1, 5/3)		\widetilde{U}_1	RR		0
(3 , 1 , 2/3)		U_1	LL, RR, $\overline{ m RR}$		0
(3, 1, -1/3)		\overline{U}_1	$\overline{\mathrm{RR}}$		0

Discrepancy between the neutron lifetime measurements

 $\Delta \tau_n = 8.7 \pm 2.2 \, \mathrm{s} \quad \text{and } \quad \mathrm{sheat} \quad \mathrm{she$

Two different methods

 $\Gamma_n^{\rm BSM} = \Gamma(n \to \chi \gamma) = \Gamma_n - \Gamma_n^{\rm SM} = {\rm Br}(n \to \chi \gamma) \Gamma_n, \quad {\rm Br}(n \to \chi \gamma) \approx 1\%$

Introduction

_eptoquarks

Neutron lifetime

Proton lifetime

Calculation

Conclusion

Proton lifetime measurements

Super-Kamiokande

Introduction

Calculation

Conclusion

Cherenkov radiation detection

Sac

Starting point: scalar leptoquark S_1

B. Fornal in B. Grinstein, *Dark Matter Interpretation of the Neutron Decay Anomaly*, Phys. Rev. Lett. **120**, 191801 (2018).

3

Sac

Starting point: scalar leptoquark S_1

B. Fornal in B. Grinstein, *Dark Matter Interpretation of the Neutron Decay Anomaly*, Phys. Rev. Lett. **120**, 191801 (2018).

↑

$\mathcal{L}_{S_1} = y_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} S_1 e_{\mathrm{R}} + y_{1\,11}^{\overline{\mathrm{RR}}} \overline{d}_{\mathrm{R}}^{\mathrm{C}} S_1 \chi + z_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} S_1^* d_{\mathrm{R}} + \mathrm{h.~c.}$

$\Delta \tau_n = 8.6 \pm 2.1 \,\mathrm{s}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

$$ho
ightarrow e^+ \pi^0$$

$$\begin{split} \mathcal{L}_{\mathcal{S}_{1}} &= y_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} \mathcal{S}_{1} \boldsymbol{e}_{\mathrm{R}} + y_{1\,11}^{\overline{\mathrm{RR}}} \overline{d}_{\mathrm{R}}^{\mathrm{C}} \mathcal{S}_{1} \chi + z_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} \mathcal{S}_{1}^{*} \boldsymbol{d}_{\mathrm{R}} + \mathrm{h.~c.} \\ & \tau(\boldsymbol{\rho} \rightarrow \boldsymbol{e}^{+} \pi^{0}) > 1.6 \times 10^{34} \, \mathrm{y} \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$p
ightarrow e^+ \gamma$$

$$\mathcal{L}_{S_{1}} = y_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} S_{1} e_{\mathrm{R}} + y_{1\,11}^{\mathrm{RR}} \overline{d}_{\mathrm{R}}^{\mathrm{C}} S_{1} \chi + z_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} S_{1}^{*} d_{\mathrm{R}} + \mathrm{h.~c.}$$

$$\tau(p \to e^{+} \gamma) > 6.7 \times 10^{32} \mathrm{y}$$

$$u \longrightarrow e^{+}$$

$$d \longrightarrow \gamma$$

$$p \longrightarrow e^{+}$$

$$e^{+}$$

$$u \longrightarrow e^{+}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 のへぐ

Atomic parity violation in cesium

weak charge:
$$Q_{\rm W}^{\rm SM}(Z,N) = -2(2Z+N)C_{1u} - 2(Z+2N)C_{1d}$$

new physics contribution: $\delta C_{1q} = c_{qq;ee}^{\text{LL}} - c_{qq;ee}^{\text{LR}} + c_{qq;ee}^{\text{RL}} - c_{qq;ee}^{\text{RR}}$

$$\delta C_{1u} = -c_{11;11}^{\rm RR} = \frac{v^2}{4m_{S_1}^2} \left(y_{1\,11}^{\rm RR}\right)^2$$

weak charge measurement in $^{133}\mathrm{Cs}$ differs from the SM:

$$\begin{split} \delta Q_{\rm W} &= Q_{\rm W} - Q_{\rm W}^{\rm SM} = 0.65(43) \\ & \left| \delta C_{1u} \right| = \left| \frac{\delta Q_{\rm W}}{376} \right| \sim 10^{-3} \\ & \frac{\left| y_{111}^{\rm RR} \right|}{m_{S_1}} \sim 2.6 \times 10^{-4} \, {\rm GeV}^{-1} \end{split}$$

Atomic parity violation in cesium

weak charge:
$$Q_{W}^{SM}(Z, N) = -2(2Z + N)C_{1u} - 2(Z + 2N)C_{1d}$$

new physics contribution: $\delta C_{1q} = c_{qq;ee}^{LL} - c_{qq;ee}^{LR} + c_{qq;ee}^{RL} - c_{qq;ee}^{RR}$

$$\delta C_{1u} = -c_{11;11}^{\rm RR} = \frac{v^2}{4m_{S_1}^2} \left(y_{1\,11}^{\rm RR}\right)^2$$

weak charge measurement in $^{133}\mathrm{Cs}$ differs from the SM:

$$\begin{split} \delta Q_{\rm W} &= Q_{\rm W} - Q_{\rm W}^{\rm SM} = 0.65(43) \\ & \left| \delta C_{1u} \right| = \left| \frac{\delta Q_{\rm W}}{376} \right| \sim 10^{-3} \\ & \frac{\left| y_{111}^{\rm RR} \right|}{m_{S_1}} \sim 2.6 \times 10^{-4} \, {\rm GeV}^{-1} \end{split}$$

$$\Gamma(
ho o e^+ \pi^0)$$

$$\begin{split} \Gamma(p \to e^{+}\pi^{0}) &= \frac{1}{8\pi} \overline{|\mathcal{M}|^{2}} \frac{|\boldsymbol{p}_{\rm CM}|}{m_{p}^{2}} \\ &= \frac{1}{32\pi} \left(\frac{y_{111}^{\rm RR} z_{111}^{\rm RR}}{m_{S_{1}}^{2}} \right)^{2} \left(W_{0}^{\rm RR}(0) \right)^{2} \left(1 - \left(\frac{m_{\pi^{0}}}{m_{p}} \right)^{2} \right)^{2} m_{p} \end{split}$$

$$\mathcal{L}_{N\gamma N}^{ ext{eff}} = e\overline{\psi}(x) \left[F_1(q^2)\gamma^{\mu}A_{\mu}(x) + rac{1}{4m}F_2(q^2)\sigma^{\mu
u}F_{\mu
u}(x)
ight]\psi(x)$$

$$\begin{aligned} \mathcal{L}_{1}^{\text{eff}} &= \mathcal{L}_{n'}^{\text{Dirac}} + \mathcal{L}_{\chi'}^{\text{Dirac}} + \mathcal{L}_{n'\gamma n'}^{\text{eff}} + \mathcal{L}_{n'\leftrightarrow\chi'}^{\text{eff}} \\ &= \overline{n}'(i\partial - m_n)n' + \overline{\chi}'(i\partial - m_{\chi})\chi' + \frac{ea_n}{4m_n}\overline{n}'\sigma^{\mu\nu}F_{\mu\nu}n' + \varepsilon(\overline{n}'\chi' + \overline{\chi}'n') \end{aligned}$$

mass matrix diagonalisation ($\varepsilon \ll m_n - m_\chi$):

$$-m_{n}\overline{n}'n'-m_{\chi}\overline{\chi}'\chi'+\varepsilon(\overline{n}'\chi'+\overline{\chi}'n')=\begin{bmatrix}\overline{n}' & \overline{\chi}'\end{bmatrix}\begin{bmatrix}-m_{n} & \varepsilon\\ \varepsilon & -m_{\chi}\end{bmatrix}\begin{bmatrix}n'\\\chi'\end{bmatrix}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

 $\Gamma(n \to \chi \gamma)$

mass eigenstates:

$$n = -n' + \frac{\varepsilon}{m_n - m_\chi} \chi',$$

$$\chi = \frac{\varepsilon}{m_n - m_\chi} n' + \chi'$$

effective Lagrangian in the mass basis:

$$\begin{split} \mathcal{L}_{1}^{\text{eff}} &= \mathcal{L}_{n}^{\text{Dirac}} + \mathcal{L}_{\chi}^{\text{Dirac}} + \mathcal{L}_{n\gamma n}^{\text{eff}} + \mathcal{L}_{n\gamma \chi}^{\text{eff}} \\ \mathcal{L}_{n\gamma \chi}^{\text{eff}} &= -\frac{ea_{n}}{4m_{n}} \frac{\varepsilon}{(m_{n} - m_{\chi})} \overline{\chi} \sigma^{\mu\nu} F_{\mu\nu} n + \text{h. c.} \end{split}$$

◆□ → < @ → < E → < E → E → のQ @</p>

$$\Gamma(n \to \chi \gamma)$$

$$\Gamma(n \to \chi \gamma) = \frac{e^2 a_n^2}{32\pi} \frac{m_n \varepsilon^2}{(m_n - m_\chi)^2} \left(1 - \left(\frac{m_\chi}{m_n}\right)^2 \right)^3$$

 $\Gamma(\overline{n\to \chi\gamma)}$

$$-i\mathcal{M} = \langle \chi | \left(i z_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} d_{\mathrm{R}} \right) \frac{-i}{m_{5_{1}}^{2}} \left(i y_{1\,11}^{\overline{\mathrm{RR}}} \overline{d}_{\mathrm{R}}^{\mathrm{C}} \chi \right) | n \rangle$$

$$= i \frac{y_{1\,11}^{\overline{\mathrm{RR}}} z_{1\,11}^{\mathrm{RR}}}{m_{5_{1}}^{2}} P_{\mathrm{R}} v_{\chi} \langle 0 | \left(\overline{u}^{\mathrm{C}} P_{\mathrm{R}} d \right) \overline{d}^{\mathrm{C}} P_{\mathrm{R}} | n \rangle$$

$$= i \frac{y_{1\,11}^{\overline{\mathrm{RR}}} z_{1\,11}^{\mathrm{RR}}}{m_{5_{1}}^{2}} \beta \left(\overline{v}_{n} P_{\mathrm{R}} v_{\chi} \right)$$

$$= i \frac{(\overline{v}_{1} \overline{v}_{1} \overline{v}_{1} \overline{v}_{1} \overline{v}_{1}}{m_{5_{1}}^{2}} \beta \left(\overline{v}_{n} P_{\mathrm{R}} v_{\chi} \right)$$

mixing parameter:
$$\varepsilon = \frac{y_{111}^{\text{RR}} z_{111}^{\text{RR}}}{m_{S_1}^2} \beta$$
, $\beta = 0.0144(3)(21) \text{ GeV}^3$
 $\Gamma(n \to \chi \gamma) = \frac{e^2 a_n^2}{32\pi} \left(\frac{y_{111}^{\overline{\text{RR}}} z_{111}^{\text{RR}}}{m_{S_1}^2}\right)^2 \beta^2 \left(1 - \left(\frac{m_{\chi}}{m_n}\right)^2\right)^3 \frac{m_n}{(m_n - m_{\chi})^2}$

 $\text{interaction basis:} \quad \mathcal{L}_2^{\text{eff}} = \mathcal{L}_{p'}^{\text{Dirac}} + \mathcal{L}_{e^{+'}}^{\text{Dirac}} + \mathcal{L}_{p'\gamma p'}^{\text{eff}} + \mathcal{L}_{e^{+'}\gamma e^{+'}}^{\text{eff}} + \mathcal{L}_{p'\leftrightarrow e^{+'}}^{\text{eff}}$

$$\begin{aligned} \mathcal{L}_{p'\gamma p'}^{\mathrm{eff}} &= e\overline{p}' \left[\gamma^{\mu} A_{\mu} + \frac{a_{p}}{4m_{p}} \sigma^{\mu\nu} F_{\mu\nu} \right] p' , \\ \mathcal{L}_{e^{+'}\gamma e^{+'}}^{\mathrm{eff}} &= e \left(\overline{e}^{+'} \gamma^{\mu} A_{\mu} e^{+'} \right) \end{aligned}$$

mass basis:
$$\mathcal{L}_{2}^{\text{eff}} = \mathcal{L}_{p}^{\text{Dirac}} + \mathcal{L}_{e^{+}}^{\text{Dirac}} + \mathcal{L}_{p\gamma p}^{\text{eff}} + \mathcal{L}_{e^{+}\gamma e^{+}}^{\text{eff}} + \mathcal{L}_{p\gamma e^{+}}^{\text{eff}}$$

 $\mathcal{L}_{p\gamma e^{+}}^{\text{eff}} = -\frac{ea_{p}}{4m_{p}}\frac{\varepsilon}{(m_{p} - m_{e})}\overline{e}^{+}\sigma^{\mu\nu}F_{\mu\nu}p + \text{h. c.}$

$$\Gamma(p \to e^+ \gamma) = \frac{e^2 a_p^2}{32\pi} \left(\frac{y_{111}^{\rm RR} z_{111}^{\rm RR}}{m_{S_1}^2} \right)^2 \beta^2 \left(1 - \left(\frac{m_e}{m_p} \right)^2 \right)^3 \frac{m_p}{(m_p - m_e)^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fornal and Grinstein exclude proton decay channel

$p ightarrow n^* e^+ u_e ightarrow \chi e^+ u_e$.

In this case m_{χ} is constrained:

 $m_n > m_\chi > m_p - m_e$

Coupling constants

we use the previous constraint on m_χ , results from atomic parity violation,

$$\Delta au_n = 8.6 \pm 2.1 \,\mathrm{s}$$

and
$$au(m{p}
ightarrow e^+\pi^0)>1.6 imes10^{34}~{
m y}$$

$$au(\mathbf{p}
ightarrow \mathbf{e}^+ \gamma)$$

$$egin{aligned} &\Gamma(p
ightarrow e^+ \pi^0) \propto \left(rac{y_{111}^{\mathrm{RR}} z_{111}^{\mathrm{RR}}}{m_{\mathcal{S}_1}^2}
ight)^2 \ , \qquad &\Gamma(p
ightarrow e^+ \gamma) \propto \left(rac{y_{111}^{\mathrm{RR}} z_{111}^{\mathrm{RR}}}{m_{\mathcal{S}_1}^2}
ight)^2 \ & au(p
ightarrow e^+ \pi^0) > 1.6 imes 10^{34} \, \mathrm{y} \ , \qquad & au(p
ightarrow e^+ \gamma) > 6.7 imes 10^{32} \, \mathrm{y} \ & au \ & u \ & a$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Mass of the leptoquark S_1

$$egin{aligned} \Gamma(p
ightarrow e^+ \pi^0) \propto \left(rac{y_{1\,11}^{
m RR} z_{1\,11}^{
m RR}}{m_{\mathcal{S}_1}^2}
ight)^2 \ au(p
ightarrow e^+ \pi^0) > 1.6 imes 10^{34} \, {
m y} \end{aligned}$$

Taking both coupling constants of order one

 \downarrow $m_{S_1}\gtrsim 10^{16}~{
m GeV}$. This is GUT energy scale.

Conclusion

Also decays of very common hadrons like proton and neutron can put constraints on hypothetical particles.

Conclusion

Thank you for your attention.

◆□ > <圖 > < E > < E > E のQ@

Introduction

.eptoquarks

Neutron lifeti

Proton lifetime

Calculat

Conclusion

Backup

Introduction

Calculat

Conclusion

Backup - the Standard Model

$$\begin{aligned} \varphi' &= U_{G'}\varphi \\ A' &= U_{G'}AU_{G'}^{-1} \\ U_{U(1)_{Y}} &= e^{i\alpha(x)} \\ U_{SU(2)_{L}} &= e^{i\theta^{a}(x)\frac{\tau^{a}}{2}} \\ U_{SU(2)_{L}} &= e^{i\theta^{a}(x)\frac{\tau^{a}}{2}} \\ U_{SU(3)_{C}} &= e^{i\xi^{b}(x)\frac{\lambda^{b}}{2}} \\ \end{bmatrix} \\ \begin{bmatrix} Z_{\mu} \\ A_{\mu} \end{bmatrix} &= \begin{bmatrix} \cos\theta_{W} & -\sin\theta_{W} \\ \sin\theta_{W} & \cos\theta_{W} \end{bmatrix} \begin{bmatrix} W_{\mu}^{3} \\ B_{\mu} \end{bmatrix} \\ G_{\mu\nu}^{a} &= \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f^{abc}G_{\mu}^{b}G_{\nu}^{c} \\ W_{\mu\nu}^{a} &= \partial_{\mu}W_{\nu}^{a} - \partial_{\nu}W_{\mu}^{a} - g\varepsilon^{abc}W_{\mu}^{b}W_{\nu}^{c} \\ B_{\mu\nu} &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \\ \end{bmatrix} \\ \delta_{\mu} &= \partial_{\mu} + ig_{s}G_{\mu}^{a}\frac{\lambda^{a}}{2} + igW_{\mu}^{b}\frac{\tau^{b}}{2} + ig'YB_{\mu} \\ tan \theta_{W} &= \frac{g'}{g} \end{aligned}$$

Backup - SM Lagrangian before the symmetry breaking

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4$$

gauge kinetic term:

$$\mathcal{L}_{1}=-rac{1}{4}G^{a}_{\mu
u}G^{a\mu
u}-rac{1}{4}W^{b}_{\mu
u}W^{b\mu
u}-rac{1}{4}B_{\mu
u}B^{\mu
u}$$

fermion term:

$$\mathcal{L}_{2} = \overline{L}_{\mathrm{L}i} i \not\!\!{D} L_{\mathrm{L}i} + \overline{e}_{\mathrm{R}i} i \not\!\!{D} e_{\mathrm{R}i} + \overline{Q}_{\mathrm{L}i} i \not\!\!{D} Q_{\mathrm{L}i} + \overline{u}_{\mathrm{R}i} i \not\!\!{D} u_{\mathrm{R}i} + \overline{d}_{\mathrm{R}i} i \not\!\!{D} d_{\mathrm{R}i}$$

scalar term:

$$\mathcal{L}_3 = (D_\mu \phi)^\dagger D^\mu \phi - V(\phi)$$

Yukawa coupling term:

$$\mathcal{L}_{4} = y_{ij}^{(e)} \overline{L}_{\mathrm{L}i} \phi e_{\mathrm{R}j} + y_{ij}^{(u)} \overline{Q}_{\mathrm{L}i} \widetilde{\phi} u_{\mathrm{R}j} + y_{ij}^{(d)} \overline{Q}_{\mathrm{L}i} \phi d_{\mathrm{R}j} + \mathrm{h.~c.}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Backup - Higgs mechanism

Higgs potential:
$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

 $|\phi|^2 = \frac{\mu^2}{2\lambda} = \frac{v^2}{2}$
 $\langle 0|\phi|0\rangle = \begin{bmatrix} 0\\ v/\sqrt{2} \end{bmatrix}$
 $\phi(x) = e^{i\frac{1}{v}\tau_b\xi_b} \begin{bmatrix} 0\\ \frac{v+h(x)}{\sqrt{2}} \end{bmatrix}$

Introduction

Calculatio

Conclusion

Backup - the Standard Model

$$\mathcal{L}_{3} \supset m_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{m_{Z}^{2}}{2} Z_{\mu} Z^{\mu}$$

$$m_{W} = \frac{gv}{2}, \qquad m_{Z} = \frac{v}{2} \sqrt{g^{2} + g'^{2}}, \qquad \frac{m_{W}^{2}}{m_{Z}^{2}} = \cos^{2} \theta_{W}$$

$$\mathcal{L}_{4} \supset \frac{v}{\sqrt{2}} \left(y_{ij}^{(e)} \overline{e}_{\mathrm{L}i} e_{\mathrm{R}j} + y_{ij}^{(u)} \overline{u}_{\mathrm{L}i} u_{\mathrm{R}j} + y_{ij}^{(d)} \overline{d}_{\mathrm{L}i} d_{\mathrm{R}j} + \mathrm{h.~c.} \right)$$

$$M_{ij}^{(f)} = -\frac{v}{\sqrt{2}} y_{ij}^{(f)}$$

$$f_{\mathrm{L}i}^{'} = S_{ij} f_{\mathrm{L}j}, \qquad f_{\mathrm{R}i}^{'} = T_{ij} f_{\mathrm{R}j}$$

$$\overline{f}_{\mathrm{L}i}^{'} M_{ij}^{(f)} f_{\mathrm{R}j}^{'} = \left[\overline{f}_{\mathrm{L}k}^{'} S_{ki} \right] \left[S_{il}^{\dagger} M_{lm}^{(f)} T_{mj} \right] \left[T_{jn}^{\dagger} f_{\mathrm{R}n}^{'} \right] = \overline{f}_{\mathrm{L}i} \left(M_{\mathrm{d}}^{(f)} \right)_{ij} f_{\mathrm{R}j}$$

$$S_{ik}^{\dagger} M_{kl}^{(f)} T_{lj} = \left(M_{\mathrm{d}}^{(f)} \right)_{ij}, \qquad S_{ik}^{\dagger} y_{kl}^{(f)} T_{lj} = \left(y_{\mathrm{d}}^{(f)} \right)_{ij}$$

Backup - interactions

$$\begin{split} \mathcal{L}_2 \supset -eQ^{(e)}\overline{e}_i A\!\!\!/ e_i - eQ^{(u)}\overline{u}_i A\!\!\!/ u_i - eQ^{(d)}\overline{d}_i A\!\!\!/ d_i \\ e = g \sin \theta_{\mathrm{W}} = g' \cos \theta_{\mathrm{W}} \\ A_{\mu}\overline{f}'_{\mathrm{Li}}\gamma^{\mu}f'_{\mathrm{Li}} = A_{\mu}\overline{f}_{\mathrm{Lj}}S^{\dagger}_{ji}\gamma^{\mu}S_{ik}f_{\mathrm{Lk}} = A_{\mu}\overline{f}_{\mathrm{Lj}}\delta_{jk}\gamma^{\mu}f_{\mathrm{Lk}} = A_{\mu}\overline{f}_{\mathrm{Li}}\gamma^{\mu}f_{\mathrm{Li}} \,, \end{split}$$

$$\begin{split} \mathcal{L}_2 &\supset -\frac{g'}{2\cos\theta_{\rm W}}\overline{f}_i\left(g_{\rm V}^{(f)}\vec{Z}+g_{\rm A}^{(f)}\vec{Z}\gamma_5\right)f_i\,,\\ g_{\rm V}^{(f)} &= T_3^{(f)}-2Q^{(f)}\sin^2\theta_{\rm W},\qquad g_{\rm A}^{(f)}=T_3^{(f)} \end{split}$$

◆□ > <圖 > < E > < E > E のQ@

Backup - interactions

$$\begin{aligned} \mathcal{L}_{2} \supset -\frac{g}{\sqrt{2}} \left(J_{q\mu}^{CC} W^{+\mu} + J_{l\mu}^{CC} W^{+\mu} + h. \text{ c.} \right) \\ J_{q\mu}^{CC} &= \overline{u}'_{Li} \gamma_{\mu} d'_{Li} = \overline{u}_{Lj} S_{ji}^{(u)\dagger} \gamma_{\mu} S_{ik}^{(d)} d_{Lk} = \overline{u}_{Lj} V_{jk} \gamma_{\mu} d_{Lk} \\ V &= S^{(u)\dagger} S^{(d)} \\ u'_{Li} &= V_{ij}^{\dagger} u_{Lj} \quad \text{in} \quad d'_{Li} = d_{Li} \\ J_{l\mu}^{CC} &= \overline{\nu}'_{Li} \gamma_{\mu} e'_{Li} = \overline{\nu}_{Lj} S_{ji}^{(\nu)\dagger} \gamma_{\mu} S_{ik}^{(e)} e_{Lk} = \overline{\nu}_{Lj} \delta_{jk} \gamma_{\mu} e_{Lk} = \overline{\nu}_{Li} \gamma_{\mu} e_{Li} \\ S_{ik}^{(\nu)\dagger} M_{kl}^{(\nu)} T_{lj}^{(\nu)} &= \left(M_{d}^{(\nu)} \right)_{ij} = \text{diag}(0, 0, 0) \\ J_{l\mu}^{CC\dagger} &= \overline{e}'_{Li} \gamma_{\mu} \nu'_{Li} = \overline{e}_{Lj} S_{ji}^{(e)\dagger} \gamma_{\mu} S_{ik}^{(\nu)} \nu_{Lk} = \overline{e}_{Lj} \gamma_{\mu} U_{jk} \nu_{Lk} \\ \nu'_{Li} &= U_{ij} \nu_{Lj} \quad \text{in} \quad e'_{Li} = e_{Li} \\ \nu'_{L} &= \begin{bmatrix} \nu_{e} & \nu_{\mu} & \nu_{\tau} \end{bmatrix}_{L}^{T} = U \begin{bmatrix} \nu_{1} & \nu_{2} & \nu_{3} \end{bmatrix}_{L}^{T}, \quad e'_{L} = e_{L} = \begin{bmatrix} e^{-} & \mu^{-} & \tau^{-} \end{bmatrix}_{L}^{T} \\ \mathcal{L}_{2} \supset -\frac{g_{s}}{2} \overline{q}_{i} \lambda_{ij}^{a} \gamma_{\mu} G_{a}^{\mu} q_{j} \end{aligned}$$

Backup - charge conjugation and chirality

$$\begin{split} \psi^{\mathrm{C}} &= C\gamma^{0}\psi^{*} = i\gamma^{2}\psi^{*} \\ \psi_{\mathrm{L}} &= P_{\mathrm{L}}\psi = \frac{(1-\gamma_{5})}{2}\psi, \qquad \psi_{\mathrm{R}} = P_{\mathrm{R}}\psi = \frac{(1+\gamma_{5})}{2}\psi \\ \overline{\psi}_{\mathrm{L,R}} &\equiv (P_{\mathrm{L,R}}\psi)^{\dagger}\gamma^{0} = \psi^{\dagger}P_{\mathrm{L,R}}\gamma^{0} = \overline{\psi}P_{\mathrm{R,L}} \\ \psi^{\mathrm{C}}_{\mathrm{L,R}} &\equiv (\psi_{\mathrm{L,R}})^{\mathrm{C}} = (\psi^{\mathrm{C}})_{\mathrm{R,L}} \\ \overline{\psi}^{\mathrm{C}}_{\mathrm{L,R}} &\equiv \overline{\psi^{\mathrm{C}}_{\mathrm{L,R}}} = \overline{(\psi_{\mathrm{L,R}})^{\mathrm{C}}} = \overline{(\psi^{\mathrm{C}})}_{\mathrm{R,L}} = \overline{\psi^{\mathrm{C}}}P_{\mathrm{L,R}} \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Backup - Lagrangian of the rare meson decays

$$\begin{split} \mathcal{L}_{\overline{q}^{i}q^{j}\overline{\ell}\ell'} &= -\frac{4\,G_{\mathrm{F}}}{\sqrt{2}} \left[c_{ij;\ell\ell'}^{\mathrm{LL}} \left(\overline{q}_{\mathrm{L}}^{i}\gamma^{\mu}q_{\mathrm{L}}^{j} \right) \left(\overline{\ell}_{\mathrm{L}}\gamma_{\mu}\ell_{\mathrm{L}}^{\prime} \right) + c_{ij;\ell\ell'}^{\mathrm{RR}} \left(\overline{q}_{\mathrm{R}}^{i}\gamma^{\mu}q_{\mathrm{R}}^{j} \right) \left(\overline{\ell}_{\mathrm{R}}\gamma_{\mu}\ell_{\mathrm{R}}^{\prime} \right) \\ &+ c_{ij;\ell\ell'}^{\mathrm{LR}} \left(\overline{q}_{\mathrm{L}}^{i}\gamma^{\mu}q_{\mathrm{L}}^{j} \right) \left(\overline{\ell}_{\mathrm{R}}\gamma_{\mu}\ell_{\mathrm{R}}^{\prime} \right) + c_{ij;\ell\ell'}^{\mathrm{RL}} \left(\overline{q}_{\mathrm{R}}^{i}\gamma^{\mu}q_{\mathrm{R}}^{j} \right) \left(\overline{\ell}_{\mathrm{L}}\gamma_{\mu}\ell_{\mathrm{L}}^{\prime} \right) \\ &+ g_{ij;\ell\ell'}^{\mathrm{RR}} \left(\overline{q}_{\mathrm{R}}^{i}q_{\mathrm{L}}^{j} \right) \left(\overline{\ell}_{\mathrm{R}}\ell_{\mathrm{L}}^{\prime} \right) + h_{ij;\ell\ell'}^{\mathrm{RR}} \left(\overline{q}_{\mathrm{R}}^{i}\sigma^{\mu\nu}q_{\mathrm{L}}^{j} \right) \left(\overline{\ell}_{\mathrm{R}}\sigma_{\mu\nu}\ell_{\mathrm{L}}^{\prime} \right) \\ &+ g_{ij;\ell\ell'}^{\mathrm{LL}} \left(\overline{q}_{\mathrm{L}}^{i}q_{\mathrm{R}}^{j} \right) \left(\overline{\ell}_{\mathrm{L}}\ell_{\mathrm{R}}^{\prime} \right) + h_{ij;\ell\ell'}^{\mathrm{LL}} \left(\overline{q}_{\mathrm{L}}^{i}\sigma^{\mu\nu}q_{\mathrm{R}}^{j} \right) \left(\overline{\ell}_{\mathrm{L}}\sigma_{\mu\nu}\ell_{\mathrm{R}}^{\prime} \right) \\ &+ g_{ij;\ell\ell'}^{\mathrm{LR}} \left(\overline{q}_{\mathrm{L}}^{i}q_{\mathrm{R}}^{j} \right) \left(\overline{\ell}_{\mathrm{R}}\ell_{\mathrm{L}}^{\prime} \right) + g_{ij;\ell\ell'}^{\mathrm{RL}} \left(\overline{q}_{\mathrm{R}}^{i}q_{\mathrm{L}}^{j} \right) \left(\overline{\ell}_{\mathrm{L}}\ell_{\mathrm{R}}^{\prime} \right) \right] + h. \ c. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction

Backup - Wilson coefficients for the Lagrangian of the rare meson decays

$$\begin{split} c^{\mathrm{LL}}_{ij;\ell\ell'} &= -\frac{v^2}{4m_{\mathcal{S}_1}^2} \left(V^{\mathsf{T}} y_1^{\mathrm{LL}} \right)_{j\ell'} \left(V^{\mathsf{T}} y_1^{\mathrm{LL}} \right)_{i\ell}^* \\ c^{\mathrm{RR}}_{ij;\ell\ell'} &= -\frac{v^2}{4m_{\mathcal{S}_1}^2} y_{1j\ell'}^{\mathrm{RR}} y_{1i\ell}^{\mathrm{RR}*} , \\ g^{\mathrm{LL}}_{ij;\ell\ell'} &= -4h^{\mathrm{LL}}_{ij;\ell\ell'} &= \frac{v^2}{4m_{\mathcal{S}_1}^2} y_{1j\ell'}^{\mathrm{RR}} \left(V^{\mathsf{T}} y_1^{\mathrm{LL}} \right)_{i\ell}^* \\ g^{\mathrm{RR}}_{ij;\ell\ell'} &= -4h^{\mathrm{RR}}_{ij;\ell\ell'} &= \frac{v^2}{4m_{\mathcal{S}_1}^2} \left(V^{\mathsf{T}} y_1^{\mathrm{LL}} \right)_{j\ell'} y_{1i\ell}^{\mathrm{RR}*} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Backup - Atomic parity violation in cesium,

$$\mathcal{L}_{\overline{q}^{i}q^{j}\overline{\ell}\ell'} = -\frac{4G_{\rm F}}{\sqrt{2}} \Big[c_{ij;\ell\ell'}^{\rm RR} \left(\overline{q}_{\rm R}^{i} \gamma^{\mu} q_{\rm R}^{j} \right) \left(\overline{\ell}_{\rm R} \gamma_{\mu} \ell_{\rm R}^{\prime} \right) \dots \Big] + \text{h. c.}$$

$$c_{ij;\ell\ell'}^{\rm RR} = -\frac{v^{2}}{4m_{\mathcal{S}_{1}}^{2}} y_{1\,i\ell'}^{\rm RR} y_{1\,i\ell}^{\rm RR*} \rightarrow c_{11;11}^{\rm RR} = -\frac{v^{2}}{4m_{\mathcal{S}_{1}}^{2}} \left(y_{1\,11}^{\rm RR} \right)^{2} \quad (ue^{-} \rightarrow ue^{-})$$

Interaction violating parity:

$$\mathcal{L}_{\mathrm{PV}}^{\mathrm{SM}} = \frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{q=u,d} \left[C_{1q} \left(\overline{e} \gamma^{\mu} \gamma^{5} e \right) \left(\overline{q} \gamma_{\mu} q \right) + C_{2q} \left(\overline{e} \gamma^{\mu} e \right) \left(\overline{q} \gamma_{\mu} \gamma^{5} q \right) \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 亘 のへで

Backup - Atomic parity violation in cesium,

$$\mathcal{L}_{\overline{q}^{i}q^{j}\overline{\ell}\ell'} = -\frac{4G_{\rm F}}{\sqrt{2}} \Big[c_{ij;\ell\ell'}^{\rm RR} \left(\overline{q}_{\rm R}^{i} \gamma^{\mu} q_{\rm R}^{j} \right) \left(\overline{\ell}_{\rm R} \gamma_{\mu} \ell_{\rm R}^{\prime} \right) \dots \Big] + \text{h. c.}$$

$$c_{ij;\ell\ell'}^{\rm RR} = -\frac{v^{2}}{4m_{\mathcal{S}_{1}}^{2}} y_{1\,i\ell'}^{\rm RR} y_{1\,i\ell}^{\rm RR*} \rightarrow c_{11;11}^{\rm RR} = -\frac{v^{2}}{4m_{\mathcal{S}_{1}}^{2}} \left(y_{1\,11}^{\rm RR} \right)^{2} \quad (ue^{-} \rightarrow ue^{-})$$

Interaction violating parity:

$$\mathcal{L}_{\mathrm{PV}}^{\mathrm{SM}} = \frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{\boldsymbol{q}=\boldsymbol{u},\boldsymbol{d}} \left[\mathcal{C}_{1\boldsymbol{q}} \left(\overline{\boldsymbol{e}} \gamma^{\mu} \gamma^{5} \boldsymbol{e} \right) \left(\overline{\boldsymbol{q}} \gamma_{\mu} \boldsymbol{q} \right) + \mathcal{C}_{2\boldsymbol{q}} \left(\overline{\boldsymbol{e}} \gamma^{\mu} \boldsymbol{e} \right) \left(\overline{\boldsymbol{q}} \gamma_{\mu} \gamma^{5} \boldsymbol{q} \right) \right]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Backup - form factor W_0 , β and the decay width differential

$$\left\langle P(k') \left| \mathcal{O}^{\Gamma\Gamma'}(q) \right| N(k,s) \right\rangle = \left[W_0^{\Gamma\Gamma'}(q^2) - \frac{iq}{m_N} W_1^{\Gamma\Gamma'}(q^2) \right] P_{\Gamma'} u_N(k,s)$$
$$\mathcal{O}^{\Gamma\Gamma'} = \left(\overline{q}^{\mathrm{C}} P_{\Gamma} q \right) P_{\Gamma'} q$$

$$\left\langle 0 \left| \left(\overline{u}^{\mathrm{C}} P_{\mathrm{R}} d \right) P_{\mathrm{R}} d \right| n \right\rangle = \beta P_{\mathrm{R}} u_{n}$$

$$\begin{split} \mathrm{d} \boldsymbol{\Gamma} &= \frac{1}{32\pi^2} \overline{|\mathcal{M}|^2} \frac{|\boldsymbol{p}_{\mathrm{CM}}|}{m^2} \mathrm{d} \boldsymbol{\Omega} \\ \boldsymbol{\Gamma} &= \frac{1}{8\pi} \overline{|\mathcal{M}|^2} \frac{|\boldsymbol{p}_{\mathrm{CM}}|}{m^2} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Conclusion

590

Backup - completeness relation and traces

$$\{\gamma^{5}, \gamma^{\mu}\} = 0, \qquad (\gamma^{5})^{2} = \mathbb{I}$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbb{I}$$

$$\sum_{s} u_{a}(p, s)\overline{u}_{b}(p, s) = (\not p + m\mathbb{I})_{ab}$$

$$\sum_{s} v_{a}(p, s)\overline{v}_{b}(p, s) = (\not p - m\mathbb{I})_{ab}$$

$$\sum_{r} \epsilon^{*}_{\mu}(q, r)\epsilon_{\nu}(q, r) = -g_{\mu\nu}$$

$$\text{Tr [odd number } \gamma^{\mu}] = 0$$

$$\text{Tr } [\gamma^{5}] = 0$$

$$\text{Tr } [\gamma^{5} \cdot \text{odd number } \gamma^{\mu}] = 0$$

$$\text{Tr } [\gamma^{5} \gamma^{\mu} \gamma^{\nu}] = 0$$

$$\text{Tr } [\gamma^{\mu} \gamma^{\nu}] = 4g^{\mu\nu}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Backup - $\Gamma(
ho o e^+ \pi^0)$

$$\begin{split} -i\mathcal{M} &= \left\langle e^{+}(k_{2})\pi^{0}(k_{3}) \left| \left(iz_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} d_{\mathrm{R}} \right) \frac{i}{q'^{2} - m_{S_{1}}^{2}} \left(iy_{1\,11}^{\mathrm{RR}} \overline{u}_{\mathrm{R}}^{\mathrm{C}} e_{\mathrm{R}} \right) \right| p(k_{1}) \right\rangle \\ &= i \frac{y_{1\,11}^{\mathrm{RR}} z_{1\,11}^{\mathrm{RR}}}{m_{S_{1}}^{2}} P_{\mathrm{R}} v_{e^{+}}(k_{2}, s_{2}) \left\langle \pi^{0}(k_{3}) \left| \left(\overline{u}^{\mathrm{C}} P_{\mathrm{R}} d \right) \overline{u}^{\mathrm{C}} P_{\mathrm{R}} \right| p(k_{1}) \right\rangle \\ &= i \frac{y_{1\,11}^{\mathrm{RR}} z_{1\,11}^{\mathrm{RR}}}{m_{S_{1}}^{2}} W_{0}^{\mathrm{RR}}(k_{2}^{2}) \left(\overline{v}_{p}(k_{1}, s_{1}) P_{\mathrm{R}} v_{e^{+}}(k_{2}, s_{2}) \right) \\ &\overline{|\mathcal{M}|^{2}} = \frac{1}{2} \sum_{s_{1}, s_{2}} |\mathcal{M}|^{2} \end{split}$$

$$= \left(\frac{y_{111}^{\rm RR} z_{111}^{\rm RR}}{m_{S_1}^2}\right)^2 \left(W_0^{\rm RR}(0)\right)^2 (k_2 \cdot k_1)$$

Backup - magnetic moment and $\Gamma(n o \chi \gamma)$

proton:
$$F_1^p(0) + F_2^p(0) = \mu_p = 1 + a_p = 1 + 1.793 = 2.793$$

neutron: $F_1^n(0) + F_2^n(0) = \mu_n = 0 + a_n = 0 - 1.913 = -1.913$

$$-i\mathcal{M} = \frac{ea_n}{2m_n} \frac{\varepsilon}{(m_n - m_\chi)} q_\mu \epsilon_\nu^*(q, r) \overline{u}_\chi(k_2, s_2) \sigma^{\mu\nu} u_n(k_1, s_1)$$
$$\overline{|\mathcal{M}|^2} = \frac{1}{2} \sum_{s_1, s_2, r} |\mathcal{M}|^2 = 2 \left(\frac{ea_n \varepsilon}{m_n(m_n - m_\chi)}\right)^2 (k_1 \cdot q) (k_2 \cdot q)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction

Backup - lower bounds on the partial proton lifetimes

proton decay mode	partial lifetime [10 ³⁰ y]
$p ightarrow e^+ \pi^0$	16000
${m ho} o \mu^+ \pi^{m 0}$	7700
${\it p} ightarrow u \pi^+$	390
${\it p} ightarrow { m e}^+ \eta$	10000
${\it p} ightarrow \mu^+ \eta$	4700
${\it p} ightarrow e^+ ho^0$	720
${m ho} o \mu^+ ho^{m 0}$	570
$p ightarrow u ho^+$	162
${\it p} ightarrow e^+ \omega$	1600
${m ho} o \mu^+ \omega$	2800
$ ho ightarrow e^+ K^0$	1000
$ ho o \mu^+ K^0$	1600
$p ightarrow u K^+$	5900
${\it p} ightarrow {\it e}^+ \gamma$	670
$p ightarrow \mu^+ \gamma$	478

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?